相关试卷

  • 1、如图,在四面体ABCD中,AD平面BCD,BCCD,BC=CD=AD=2,MAC的中点.

    (1)、求证:BCMD
    (2)、求二面角BMDC的余弦值;
    (3)、求四面体ABCD外接球的表面积.
  • 2、已知函数fx=ax2blnxx=1处的切线方程为y=2x+3.
    (1)、求实数ab的值;
    (2)、求函数fx的极值.
  • 3、某公司对25家连锁店进行了考核,将各连锁店的评估分数按60,70,70,80,80,90,90,100分成4组,划分为ABCD四个等级,等级评定标准如表所示.

    评估分数

    60,70

    70,80

    80,90

    90,100

    评定等级

    D

    C

    B

    A

       

    (1)、估计各连锁店评估得分的第52百分位数;
    (2)、从评估分数不小于80的连锁店中随机抽取2家介绍经验,求至少抽到1家A等级的概率.
  • 4、已知函数f(x)=2exg(x)=2ln(x+2) , 请写出函数f(x)g(x)的图象的一条公共切线的方程为.
  • 5、已知an是各项均为正的等比数列,Sn为其前n项和,若a1=1a2a3=8 , 则公比q=S4=
  • 6、函数fx=xlnx1,0处的切线方程为.
  • 7、过点P1,2且与曲线y=fx=2x3相切的直线的方程为(       )
    A、6x+y8=0 B、6xy4=0 C、3x2y+1=0 D、3x+2y7=0
  • 8、已知椭圆C:x26+y24=1 , 则下列说法中正确的是(       )
    A、椭圆C的焦点在x轴上 B、椭圆C的长轴长是26 C、椭圆C的焦距为4 D、椭圆C的离心率为33
  • 9、若函数fx=x4xalnx单调递增,则实数a的取值范围为(       )
    A、,0 B、,4 C、4,4 D、,4
  • 10、某产品的销售收入y1 , 生产成本y2 , 产量x(x>0)之间满足以下函数,y1=25x2,y2=3x32x2 , 要使利润z=y1y2最大,则x=(       )
    A、6 B、7 C、8 D、9
  • 11、已知甲乙两人投篮的命中率分别是0.5和0.9,且两人投篮相互没有影响,若投进一球得2分,未投进得0分,则每人投篮一次,得分相等的概率为(       )
    A、0.40 B、0.45 C、0.50 D、0.05
  • 12、学校里获奖的3名同学和一名颁奖领导排成一排上台拍照,要求领导站在最边上,则不同的站位顺序共有(       )
    A、6种 B、12种 C、18种 D、24种
  • 13、已知函数fx 是R上的可导函数,f(x) 的导数f'(x) 的图像如图,则下列结论正确的是

    A、a, c分别是极大值点和极小值点 B、b,c分别是极大值点和极小值点 C、f(x)在区间(a,c)上是增函数 D、f(x)在区间(b,c)上是减函数
  • 14、已知集合A=xlog2x<1,B={x0<x1} , 则AB=(       )
    A、0,2 B、1,2 C、,2 D、0,1
  • 15、已知向量a=(1,2),b=(1,3) , 则(       )
    A、a//(a+b) B、a//(ab) C、a(ab) D、a(a+b)
  • 16、已知i是虚数单位,则3+4i2+i=(     )
    A、1 B、2 C、5 D、6
  • 17、已知函数f(x)=ex+(k1)ex是偶函数.
    (1)、求k的值:
    (2)、设函数g(x)=nf(x)2exf(2x)8 , 若不等式g(x)<0对任意的x(1,+)恒成立.求实数n的取值范围;
    (3)、设h(x)=log2f(x) , 当m为何值时,关于x的方程[h(x)1+m][h(x)14m]+2m2+m=0有实根.
  • 18、某厂将“冰墩墩”的运动造型徽章纪念品定价为50元一个,该厂租用生产这种纪念品的厂房,租金为每年20万元,该纪念品年产量为x万个0<x20 , 每年需投入的其它成本为Cx=12x2+5x,0<x1060x+2560x756,10<x20(单位:万元),且该纪念品每年都能买光.
    (1)、求年利润fx(单位:万元)关于x的函数关系式;
    (2)、当年产量x为何值时,该厂的年利润最大?求出此时的年利润.
  • 19、已知函数fx=x2+3x+1
    (1)、当x1,+时,判断fx的单调性并证明;
    (2)、已知条件p:1x3 , 条件q:x2ax+3a>0 , 若pq的充分条件,求实数a的取值范围.
  • 20、已知方程ax2bx+3=0的解为1,3.
    (1)、求实数a,b的值;
    (2)、若m>0n>0 , 且am+bn=3 , 求1m+1n的最小值.
上一页 1404 1405 1406 1407 1408 下一页 跳转