相关试卷
-
1、医用回旋加速器工作原理示意图如图甲所示,其工作原理是:带电粒子在磁场和交变电场的作用下,反复在磁场中做回旋运动,并被交变电场反复加速,达到预期所需要的粒子能量,通过引出系统引出后,轰击在靶材料上,获得所需要的核素。时,回旋加速器中心部位O处的灯丝释放的带电粒子在回旋加速器中的运行轨道和加在间隙间的高频交流电压如图乙所示(图中为已知量)。若带电粒子的比荷为k,忽略粒子经过间隙的时间和相对论效应,则( )A、被加速的粒子带正电 B、磁体间匀强磁场的磁感应强度大小为 C、粒子被加速的最大动量大小与D形盒的半径有关 D、带电粒子在D形盒中被加速次数与交流电压有关
-
2、如图甲所示,xOy平面内y轴左侧有宽为L的匀强电场区域,电场方向平行于y轴向上,匀强电场左侧有一电压为U的加速电场。一质量为m、带电量为+q的带电粒子(不计重力)从A点飘入加速电场,加速后由x轴上的P(-L,0)点进入匀强电场,之后从y轴上的Q(0,)点进入y轴的右侧。
(1)求粒子经过P点时的速度大小;
(2)求匀强电场的场强大小E及达到Q点速度大小;
(3)若y轴右侧存在一圆形匀强磁场区域,磁场的磁感应强度B随时间t的变化规律如图乙所示,取磁场垂直纸面向外为正方向。时刻进入磁场的粒子始终在磁场区域内沿闭合轨迹做周期性运动,求圆形磁场区域的最小面积S以及粒子进入磁场时的位置到y轴的最短距离x。(忽略磁场突变的影响)
-
3、如图,一质量M=6kg的木板B静止于光滑水平面上,物块A质量m=6kg,停在木板B的左端.质量为m0=1kg的小球用长为L=0.8m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与物块A发生碰撞后反弹,反弹所能达到的最大高度为h=0.2m,物块A与小球可视为质点,不计空气阻力.已知物块A、木板B间的动摩擦因数μ=0.1,(g=10m/s2)求:
(1)小球运动到最低点与物块A碰撞前瞬间,小球的速度大小;
(2)小球与物块A碰撞后瞬间,物块A的速度大小;
(3)为使物块A、木板B达到共同速度前物块A不滑离木板,木板B至少多长?
-
4、某电阻的阻值约为 , 现要用如图所示的电路测量其阻值,可选器材如下:
A.电源(电动势约);
B.滑动变阻器(最大阻值);
C.滑动变阻器(最大阻值);
D.电压表V(量程 , 内阻为);
E.电流表(量程 , 内阻约为);
F.电流表(量程 , 内阻约为);
G.开关、导线若干。
(1)电流表应选择(填“E”或“F”);
(2)某同学做实验的过程中,发现滑动变阻器的滑片即便在很大范围内滑动,电压表和电流表的示数都几乎为零,不方便获得多组电压电流数据,于是向你求助。你帮他检查后发现器材完好,电路连接无误,各接线柱接触良好。请帮该同学判断最有可能存在的问题并告诉他解决问题的办法:
(3)为了消除因电表内阻造成的系统误差,测量时应接(填“a”或“b”)。某次测量中读得电压表的示数为 , 电流表的示数为 , 消除系统误差之后,算得的阻值为(保留3位有效数字)。
-
5、如图所示,某同学利用气垫导轨和光电门“验证动量守恒定律”。将气垫导轨放置在水平桌面上,导轨的左端有缓冲装置,右端固定有弹簧。将滑块b静止放于两光电门之一间,用弹簧将滑块a弹出。滑块a被弹出后与b发生碰撞,b与缓冲装置相碰后立即停下,测得滑块a、b质量分别为ma、mb , 两个滑块上安装的挡光片的宽度均为d。
(1)实验中记录下滑块b经过光电门时挡光片的挡光时间为t0 , 滑块a第一次、第二次经过光电门A时,挡光片的挡光时间分别为t1、t2 , 则通过表达式可以验证动量守恒定律。物块a、b的质量大小关系为mamb(填“>”“<”或“=”);
(2)将滑块b上的挡光片取下,在两滑块a端面粘上轻质尼龙拉扣,使两滑块碰撞能粘在一起运动,记录下滑块a上挡光片经过光电门A的挡光时间为ta , 滑块a、b粘在一起后挡光片经过光电门B的挡光时间为tb , 若两滑块的质量仍为ma、mb , 则验证动量守恒定律的表达式是。
-
6、如图所示,空间有一垂直纸面向外的磁感应强度为的匀强磁场,一质量为 , 且足够长的绝缘木板静止在光滑水平面上,在木板的左端无初速放置一质量为 , 电荷量的滑块,滑块与绝缘木板之间动摩擦因数为 , 滑块受到的最大静摩擦力可认为等于滑动摩擦力。现对木板施加方向水平向左,大小为的恒力,取。则( )A、若 , 木板和滑块一起做加速度减小的加速运动,最后做匀速运动 B、若 , 滑块先匀加速到 , 再做加速度减小的加速运动,最后做匀速运动 C、若 , 木板和滑块一直以做匀加速运动 D、若 , 木板先以做匀加速运动,再做加速度增大的加速运动,最后做匀加速运动
-
7、如图所示,两根等高光滑的圆弧导轨,导轨电阻不计。在导轨顶端右侧连有一阻值为R的电阻,整个装置处在竖直向上的匀强磁场中。现有一根长度稍长于导轨间距的金属棒从导轨最低位置cd开始,在外力作用下以初速度沿轨道做匀速圆周运动,由cd运动至最高位置ab,则该过程中,下列说法正确的是( )A、通过R的电流方向由里向外 B、通过R的电流大小在变小 C、金属棒所受安培力一直减小 D、外力做的功等于整个回路产生的焦耳热
-
8、(多选)某电磁弹射装置的简化模型如图所示,线圈固定在水平放置的光滑绝缘杆上,将金属环放在线圈左侧。闭合开关时金属环被弹射出去,若( )A、从右向左看,金属环中感应电流沿逆时针方向 B、将电源正负极调换,闭合开关时金属环将向右运动 C、将金属环放置在线圈右侧,闭合开关时金属环将向右运动 D、金属环不闭合,则闭合开关时不会产生感应电动势
-
9、如图,小明做自感现象实验时,连接电路如图所示,其中L是自感系数较大、直流电阻不计的线圈,L1、L2是规格相同的灯泡,D是理想二极管。则( )A、闭合开关S,L1都逐渐变亮,L2一直不亮 B、闭合开关S,L2逐渐变亮,然后亮度不变 C、断开开关S,L1逐渐变暗至熄灭,L2变亮后再与L1同时熄灭 D、断开开关S,L1逐渐变暗至熄灭,L2一直不亮
-
10、如图所示,空间内存在四分之一圆形磁场区域,半径为 , 磁感应强度为 , 磁场方向垂直纸面向外,比荷为的电子从圆心沿方向射入磁场。要使电子能从弧之间射出,弧对应的圆心角为 , 则电子的入射速度可能为( )(不计电子的重力)A、 B、 C、 D、
-
11、如图所示,粗细均匀的正六边形线框abcdef由相同材质的导体棒连接而成,顶点a、b用导线与直流电源相连接,正六边形abcdef处在垂直于框面的匀强磁场中,若ab直棒受到的安培力大小为6N,则整个六边形线框受到的安培力大小为( )A、7N B、7.2N C、9N D、30N
-
12、如图所示,A、B是两个用等长细线悬挂起来的大小可忽略不计的小球,mB=5mA。B球静止,拉起A球,使细线与竖直方向偏角为30°,由静止释放,在最低点A与B发生弹性碰撞。不计空气阻力,则关于碰后两小球的运动,下列说法正确的是( )A、A静止,B向右,且偏角小于30° B、A向左,B向右,且偏角等于30° C、A向左,B向右,A球偏角大于B球偏角,且都小于30° D、A向左,B向右,A球偏角等于B球偏角,且都小于30°
-
13、利用如图装置可以探测从原点O发射的粒子信息。两个有界匀强磁场,沿x轴方向宽度相同,y轴方向足够长,磁场边界与y轴平行,且内侧边界距y轴均为a,磁感应强度大小均为B,方向如图所示。足够高处有一平行于x轴且关于y轴对称放置的探测板,粒子打在探测板上将被全部吸收,板长等于两个磁场外侧边界之间的距离。粒子源沿各个方向均匀向外发射质量为m,电荷量为q的正离子,不考虑粒子重力及粒子之间的相互作用,求
(1)若粒子速度大小为v,所有粒子恰好不从两个磁场外侧边界射出磁场,则磁场宽度d1的大小;
(2)若粒子的探测率 , 则磁场宽度d2至少多大;
(3)若粒子速度大小 , 磁场宽度为 , 则粒子的探测率η的大小。(可用反三角函数表示)
-
14、一实验小组设计了电动小车来研究电磁驱动。其原理为轮毂电机通过控制定子绕组通电顺序和时间,形成旋转磁场,驱动转子绕组带动轮胎转动。简化模型如图所示,定子产生边界为正方形的多个水平排列的有界匀强磁场,相邻两磁场方向相反。转子为水平放置的正方形线框。磁场以速度v向右匀速运动,一段时间后,线框以速度向右匀速运动。已知磁感应强度的大小均为B,磁场和线框的边长均为l,线框的质量为m,电阻为R,阻力的大小恒定。
(1)求线框受到的阻力大小f;
(2)若线框由静止加速到需要t时间,求这段时间内线框运动的位移大小x;
(3)以磁场和线框均做匀速运动的某时刻记为0时刻,此后磁场以加速度a向右做匀加速直线运动,t1时刻线框也做匀加速直线运动,求时间内通过线框的电量q。
-
15、如图所示装置由传送带、竖直细圆管螺旋轨道(最低点B分别与水平轨道AB、BC连接)组成。开始时可视为质点的滑块静置于传送带左端,由静止开始以可调的加速度a匀加速启动的传送带带动后,滑块滑过圆管轨道,并滑上上端与轨道BC相平的6个紧密排列的相同木块。已知滑块质量 , 每个木块的质量 , 宽度 , 传送带的长度 , 圆管轨道的半径 , 滑块与传送带及木块间的动摩擦因数分别为 , , 木块与地面DE的动摩擦因数为 , 各轨道间平滑连接,不计水平轨道与传送带及木块间的间隙,各轨道均光滑。
(1)若 , 则运动到圆心等高处P点时,滑块受到的轨道作用力大小;
(2)当滑块运动到C点时,动能与加速度a之间满足的关系;
(3)若滑块最终静止在木块5上,求:
①a大小的范围;
②木块5的最大速度及运动的最远距离。
-
16、如图甲所示,高为h、开口向上的汽缸放在水平地面上,横截面积为S、质量为m的薄活塞密封一定质量的理想气体,平衡时活塞下部与汽缸底部的间距为0.8h。移动汽缸,将其放在倾角的固定斜面上,绕过定滑轮的轻绳一端与质量为M(M未知)的物块相连,另一端与活塞相连,滑轮右侧轻绳与斜面平行,系统处于平衡时活塞恰好上升到汽缸顶部,如图乙所示。重力加速度大小为g,大气压强恒为 , , 不计一切摩擦,缸内气体的温度恒定,斜面足够长。
(1)此过程中汽缸与外界的热交换情况(选填“吸热”、“放热”);
(2)求物块的质量M;
(3)若将轻绳剪断,求剪断后瞬间汽缸和活塞的加速度大小。
-
17、为测量一未知电阻的阻值。一实验小组设计的电路如图1所示,其中为定值电阻,电压表V1和V2的内阻较大。(1)、图2是已用导线连接的实物图,其中电压表V1与定值电阻R0连接的两根导线中应选择(选填“①”、“②”)导线。闭合电键S前,滑动变阻器的滑片应置于(选填“最左端”或“最右端”)(2)、读取U1、U2的读数,描绘出图线,如图3所示,若图线的斜率为k,则阻值为(选择字母k、R0表示)的(3)、实验小组又设计了如图4所示的电路来测量同一未知电阻的阻值,其中为电阻箱,下列说法正确的是
A.示数不清,但刻线清晰的电压表V2不能在本实验中使用
B.只要满足V2的指针有较大偏转,而其内阻对实验没有影响
C.打到1,观察V2示数,然后打到2,通过同时调节滑动变阻器R和电阻箱 , 使V2示数不变
经过正确实验操作,测得的阻值(选填“大于”、“等于”或“小于”)图1电路测得的阻值,产生误差的原因是图1电路不能准确确定电阻(选填“两端的电压”或“通过的电流”)
-
18、在“探究加速度与力、质量的关系”实验中,(1)、①图1为通过位移之比测量加速度之比。抬起黑板擦,两小车同时开始运动,按下黑板擦,两小车同时停下来。用刻度尺测出两小车移动的位移、。它们的位移与加速度成(选填“正比”或“反比”)。
②在小车相同的情况下,通过增减小盘中的重物改变拉力;在盘中重物相同的情况下,通过增减小车中的重物改变小车的质量。则在实验中,(选填“需要”或“不需要”)补偿阻力的影响。
(2)、用如图2所示的装置进行实验,①关于补偿小车阻力,下列说法正确的是
A.小车上不需要固定纸带
B.不需要考虑细线与定滑轮间的摩擦
C.必须反复调整木板倾斜度,直至小车能静止在木板上
D.在小车上增减钩码并进行多次实验,不需要重新补偿阻力
②在规范的实验操作下,打出的一条纸带如图3所示,相邻两计数点间均有4个点未画出,已知电源频率为50Hz,则打计数点0时,小车的速度大小为m/s(结果保留2位有效数字)。
③在保持小车质量一定,根据实验数据得到如图4所示的a—F图像,发现图线未过原点,原因可能是
A.未补偿阻力
B.补偿阻力过度
C.计算小车所受拉力的大小时,未计入槽码盘所受的重力
D.未能满足槽码和槽码盘的总质量远小于小车和钩码的总质量
-
19、用a、b、c三束光照射图甲中的实验装置,移动滑片P,电流表示数随电压表示数变化的关系如乙图所示。则( )A、若P在O点的左侧,三种光照射时电流表均有示数 B、若P在O点的右侧同一位置,a光照射时电流表示数一定最大 C、用同一装置做双缝干涉实验,b光产生的条纹间距最小 D、a、b两束光的光子动量之比为
-
20、如图所示为一底边镀银的等腰直角三角形介质,直角边长为a。一细黄光束从O点平行底边AB入射,OA间距为0.2a。光束经AB边反射后,在BC边上D点射出介质,BD间距为0.05a,不考虑光在介质内的二次反射,则( )A、该介质的折射率为 B、光束在介质中传播的时间为 C、仅将入射点下移,光束可能无法从BC边射出 D、仅将黄光束改为紫光束,光束可能无法从BC边射出