相关试卷

  • 1、已知非零空间向量a,bc , 则下列说法正确的是(     )
    A、ab,ac , 则bc B、ab,ac,bc C、ab,ac , 则bc D、ab,ac , 则bc
  • 2、已知复数z和z¯ , 则下列说法正确的是(     )
    A、z+z¯一定是实数 B、zz¯一定是虚数 C、z+z¯=0 , 则z是纯虚数 D、zz¯=0 , 则z是纯虚数
  • 3、点P、M、N分别位于正方体ABCDA'B'C'D'的面上,AB=1 , 则PMPN的最小值是
  • 4、设O为坐标原点,从集合1,2,3,4,5,6,7,8,9中任取两个不同的元素x、y,组成A、B两点的坐标x,yy,x , 则SAOB10的概率为
  • 5、若正实数a,b满足ab=2a+b , 则a+2b的最小值是.
  • 6、已知α:2x+log2x2,β:x<m , 若αβ的充分条件,则实数m的取值范围是
  • 7、已知向量a=1,2,b=3,1 , 则向量ba方向上的投影的坐标是
  • 8、已知a1,23,13,13,23,1,2,3,函数y=xa的大致图像如图所示,则a=

  • 9、x1x6的二项展开式中的常数项是
  • 10、投掷两枚质地均匀的骰子,观察掷得的点数,则掷得的点数之和为7的概率是
  • 11、以C3,4为圆心,3为半径的圆的标准方程是.
  • 12、已知圆锥的底面半径为1,母线长为2,则该圆锥的体积是(结果保留π).
  • 13、设全集为R , 集合A=xx22x30 , 则A¯=
  • 14、已知实数集X=x1,x2,,xn , 定义:XX=xixjxi,xjXxixj可以相同).记X为集合X中的元素个数.
    (1)、若X=1,2,3,6 , 请直接给出XXXX
    (2)、若x1,x2,,xn均为正数,且XX=300 , 求X的最小值;
    (3)、若X=11 , 求证:XX17
  • 15、在数列an中,a1=1kN*都有a2k1a2ka2k+1成等差数列,且公差为2k.
    (1)、求a2a3a4a5
    (2)、求数列an的通项公式;
    (3)、是否存在x , 使得kN*a2k+xa2k+1+xa2k+2+x成等比数列.若存在,求出x的值;若不存在,说明理由.
  • 16、已知函数fx=x3+axaR的一个极值点为x=1
    (1)、求a的值;
    (2)、若过点3,m可作曲线y=fx的三条不同的切线,求实数m的取值范围.
  • 17、如图,在ABC中,角A,BC所对的边分别为abc , 已知sinA+sinBc=sinB+sinCab.

    (1)、求A;
    (2)、若BC=3BD,ABAD=0AD=2 , 将ABC沿AD折成直二面角B'ADC , 求直线AB'与平面B'CD所成角的正弦值.
  • 18、体育锻炼不仅能促进身体健康,提高心理素质,还能增强学习能力,对中学生的全面发展有着重要的积极作用.某市为了了解中学生体育锻炼时间情况,从该市随机抽取了若干学生调查了他们每天体育锻炼时间(单位:分钟),整理得到频率分布直方图,如下图所示.

    (1)、求a的值,并估计所抽查的学生每天体育锻炼时间的平均数;
    (2)、从所抽查的每天体育锻炼时间在10,20,60,70内的学生中,采用样本量按比例分配的分层抽样选取6人,再从这6人中任选2人,求所选2人不在同一组的概率.
  • 19、设fxR上的奇函数,gxR上的偶函数,并且f(x)g(x)=x2x , 则fx的解析式是
  • 20、已知函数fx=x2-2ax+5,x1ax,x>1是R上的减函数,则a的取值范围为.
上一页 883 884 885 886 887 下一页 跳转