相关试卷

  • 1、已知f(α)=sin(π+α)cos(2πα)tan(2πα)tan(απ)cos3π2α

    (1)化简:f(α)

    (2)在ABC中,内角A、B、C所对的边长分别是a、b、c,若c=2f(C)=12 , 且ABC的面积S=3 , 求a、b的值.

  • 2、已知A4,0,B0,4,Ccosα,sinα,(0<α<π)
    (1)、若OA+OC=21O为坐标原点),求OBOC的夹角;
    (2)、若ACBC , 求sinαcosα,sin3α+cos3α的值.
  • 3、已知向量a=1,2,b=t,1,c=3,1
    (1)、若a+b2ac , 求实数t的值;
    (2)、若ab+c , 求ab夹角的余弦值.
  • 4、已知向量a,b满足a=2,b=1a,b的夹角为60° , 则2a+b=.
  • 5、在ABC中,若A=30°a=72c=14 , 则C=
  • 6、下列四个命题为真命题的是(       )
    A、若向量abc , 满足a//bb//c , 则a//c B、若向量a=1,3b=2,6 , 则ab可作为平面向量的一组基底 C、若向量a=5,0b=4,3 , 则ab上的投影向量为165,125 D、若向量mn满足m=2n=3mn=3 , 则m+n=7
  • 7、与向量a=6,8共线的单位向量的坐标为(  )
    A、45,35 B、45,35 C、35,45 D、35,45
  • 8、在ABC中,ADBECF分别是BCCAAB的中线且交于点O , 则下列结论正确的是(       )
    A、ABBC=CA B、AO=13AB+AC C、AD+BE+CF=0 D、OA+OB+OC=0
  • 9、已知点GABC的重心,D,E分别为ABAC边上一点,DGE三点共线,FBC的中点,若AF=λAD+μAE , 则1λ+4μ的最小值为(       )
    A、272 B、7 C、92 D、6
  • 10、若函数fx=sinωx3cosωxω>0的图象的一条对称轴为x=π3 , 则ω的最小值为(       )
    A、32 B、2 C、52 D、3
  • 11、已知点E为平行四边形ABCD对角线BD上一点,且DE=2BE , 则AE=(       )
    A、23AB+13AD B、23AB13AD C、13AB+23AD D、13AB23AD
  • 12、若tanθ=−2 , 则1−sin2θ2sinθ⋅sinθπ4=(       )
    A、12 B、12 C、32 D、32
  • 13、已知向量a=1,tb=3,9 , 若a//b , 则t=(       )
    A、1 B、2 C、3 D、4
  • 14、已知定义在R上的可导函数f(x)的导函数为f(x),满足f'x<fxfx+3为偶函数.fx+112为奇函数,若f(9)+f(8)=32 , 则不等式fx>ex的解集为(  )
    A、,0 B、0,+ C、1,+ D、6,+
  • 15、已知(x+b)5=a5x5+a4x4+a3x3+a2x2+a1x+a0 , 若a3=40 , 则b=.
  • 16、已知双曲线x2a2y2b2=1a>0,b>0的左、右焦点分别为F1F2 , 双曲线上一点A关于原点O对称的点为B,且满足AF1BF1=0tanABF1=13 , 则该双曲线的渐近线方程为
  • 17、函数y=x+12x的最大值为.
  • 18、若圆C:x2+y2+mx+4y1=0关于直线y=3x+1对称,则m=
  • 19、已知cosαcosαsinα=2 , 则tanα+π4sin2α=(       )
    A、12 B、95 C、115 D、2
  • 20、椭圆x25+y2m=1m>0的长轴长为6,则该椭圆的离心率为(       )
    A、223 B、23 C、316 D、116
上一页 313 314 315 316 317 下一页 跳转