相关试卷

  • 1、若向量a=1,2,b=m+1,2 , 且a+ba , 则m=(       )
    A、-8 B、8 C、-2 D、2
  • 2、已知:①定积分的定义:

    y=fx为定义在a,b上的连续非负函数,为求y=fxx=ax=bx轴围成的曲边梯形的面积,可采取如下方法:

    将区间a,b分为n个小区间,每个小区间长度为ban , 每个区间即可表示为a+bani1,a+banii=1,2,3,n , 再分别过每个区间的左右端点作x轴的垂线与y=fx图象相交,即可得到一个小的曲边梯形.如图,

    n+时,每个小曲边梯形可近似看作矩形,矩形的宽即为每个小区间的长度,长可由每个小区间内的任一点的函数值近似代替(一般用区间端点的函数值),将这样无穷多个小矩形的面积相加,所得之和即为所求的由y=fxx=ax=bx轴围成的曲边梯形的面积,即S=limni=1nfa+baniban , 上式也记为abf(x)dx , 即对y=fxa,b上求定积分.

    ②定积分的计算:abf(x)dx=F(b)F(a)其中F'x=fx.

    根据以上信息,回答以下问题:

    (1)、已知0<α<π2 , 求证:0αcosxdx<α.
    (2)、将x=1x=2y=1xx轴围成的图形面积分别表示为定积分的形式与面积和的极限形式,并求其值;
    (3)、试证明:1101+1102++1200<ln2<1100+1101++1199.
  • 3、已知数列an满足a1=1 , 点an,an+1在直线y=3x+1上.
    (1)、设bn=an+12 , 证明bn为等比数列:
    (2)、求数列an的前n项和Sn
    (3)、设1an的前n项和为Tn , 证明:Tn<32.
  • 4、如图,在三棱柱ABCA1B1C1中,AB1C为正三角形,四边形AA1B1B为菱形.

    (1)、求证:AB1平面A1BC
    (2)、若AC=BC=4 , 且ACBC,ECC1的中点,求平面AB1E与平面ABC的夹角的余弦值.
  • 5、在ABC中,角A,B,C所对的边分别为a,b,c.已知1+tanA1tanA=2+3.
    (1)、求A
    (2)、若c=3 , 且ABC的面积为33 , 求ABC的周长.
  • 6、已知a>0 , 函数fx=xaxx>0.若曲线y=fx与直线y=2交于A,B两点,设A,B的横坐标分别为x1,x2 , 写出x1,x2a的一个关系式:;分别过点A,Bx轴的垂线段AA1,BB1 , 垂足分别为A1,B1 , 则四边形AA1B1B的面积为.
  • 7、已知双曲线C:x2a2y2b2=1a>0,b>0的左、右焦点分别为F1F2 , 若双曲线的左支上一点P满足sinPF1F2sinPF2F1=3 , 以F2为圆心的圆与F1P的延长线相切于点M , 且F1M=3F1P , 则双曲线的离心率为.
  • 8、甲、乙、丙三名工人加工同一型号的零件,甲加工的正品率为90% , 乙加工的正品率为80% , 丙加工的正品率为85% , 加工出来的零件混放在一起.已知甲、乙加工的零件数相同,丙加工的零件数占总数的40%.现任取一个零件,则它是正品的概率为.
  • 9、下列关于函数fx=xxlnx的说法,正确的有(       )
    A、x=1fx的极大值点 B、函数f˙x有两个零点 C、若方程fx=m有两根x1,x2 , 则x1+x2>e D、若方程fx=m有两根x1,x2 , 则x1+x2<e
  • 10、下列函数中,对称中心为1,0的有(       )
    A、y=sinπx B、y=cosx1 C、y=12x12 D、y=x33x2+x+1
  • 11、某校举行数学竞赛,现将100名参赛学生的成绩(单位:分)整理如下:

    成绩

    40,50

    50,60

    60,70

    70,80

    80,90

    90,100

    频数

    5

    25

    30

    20

    10

    10

    根据表中数据,下列结论正确的是(       )

    A、100名学生成绩的极差为60分 B、100名学生成绩的中位数大于70分 C、100名学生成绩的平均数大于60分 D、100名学生中成绩大于60分的人数所占比例超过80%
  • 12、已知平面向量a,b满足a=1,b=2,baa , 则a+b=(       )
    A、3 B、3 C、7 D、1
  • 13、设z=2i1 , 则z的共轭复数为(       )
    A、1+i B、1i C、1+i D、1i
  • 14、已知直线l过点3,4且方向向量为1,2 , 则l在x轴上的截距为(       )
    A、1 B、1 C、5 D、5
  • 15、甲、乙两人参加玩游戏活动,每轮游戏活动由甲、乙各玩一盘,已知甲每盘获胜的概率为34 , 乙每盘获胜的概率为23.在每轮游戏活动中,甲和乙获胜与否互不影响,各轮结果也互不影响,则甲、乙两人在两轮玩游戏活动中共获胜3盘的概率为.
  • 16、已知集合A=0,2,4,6,B=x0<3x81 , 则AB=(       )
    A、0,2,4 B、2,4 C、2 D、2,3,4
  • 17、设椭圆x2a2+y2b2=1a>b>0的左、右顶点分别为A1,A2 , 右焦点F1,0A2F=1
    (1)、求椭圆方程及其离心率;
    (2)、已知点P是椭圆上一动点(不与顶点重合),直线A2Py轴于点Q , 若A1PQ的面积是A2FP面积的2倍,求直线A2P的方程.
  • 18、半正多面体(semiregular solid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 , 则(       )

    A、BF平面EAB B、该二十四等边体的体积为203 C、该二十四等边体外接球的表面积为6π D、PN与平面EBFN所成角的正弦值为22
  • 19、已知曲线fx=ax2+lnx在点1,f1处的切线与x轴相交于点13,0 , 则实数a=(       )
    A、-2 B、-1 C、1 D、2
  • 20、已知椭圆E:x2a2+y2b2=1a>b>0的左、右顶点为A2,0B2,0 , 焦距为23.O为坐标原点,过点OB的圆G交直线x=1MN两点,直线AMAN分别交椭圆EPQ.
    (1)、求椭圆E的方程;
    (2)、记直线AMAN的斜率分别为k1k2 , 求k1k2的值;
    (3)、证明:直线PQ过定点,并求该定点坐标.
上一页 813 814 815 816 817 下一页 跳转