相关试卷

  • 1、已知函数f(x)的定义域为Rf(x+1)为奇函数,f(x+4)=f(x)+f(1) , 则(       )
    A、f(4)=0 B、f(5)=0 C、f(6)=0 D、f(7)=0
  • 2、已知2aa2|a|2a+2的中位数为12 , 则a=(       )
    A、3 B、2 C、1 D、1
  • 3、若tanα=2 , 则sin2α2cos2αsin2α的值为(       )
    A、2 B、2 C、23 D、23
  • 4、已知Sn是等差数列an的前n项和,若a1+a6+a11=6 , 则S9S2=(       )
    A、24 B、21 C、14 D、18
  • 5、函数f(x)=1xlog2x12的零点所在区间为(       )
    A、1,2 B、2,3 C、3,4 D、4,5
  • 6、已知集合A={x2<x<1}B=yy=x2x , 则AB=(       )
    A、14,1 B、14,1 C、2,14 D、2,14
  • 7、i3+i2i1=(       )
    A、0 B、2 C、2 D、22
  • 8、已知棱长为1的正方体ABCDA1B1C1D1 , 空间内的动点P满足AP=xAB+yAD+zAA1 , 其中xyz[0,1] , 且P到棱CC1的距离和P到平面ABCD的距离相等,则(       )
    A、z=1时,P的轨迹长度为π2 B、x=12时,四面体CBC1P的体积为定值 C、存在点P , 使得AP=π4 D、直线BP与平面BCC1B1所成角的正弦值最大为512
  • 9、如图,太阳灶是一种将太阳光反射至一点用来加热水或食物的设备,上面装有抛物面形的反光镜,镜的轴截面是抛物线的一部分,已知太阳灶的口径(直径)为4m,深度为0.5m,则该抛物线顶点到焦点的距离为(       )

       

    A、0.25m B、0.5m C、1m D、2m
  • 10、已知集合A=1,2,3,4,B=3,4,5,6 , 则AB=(       )
    A、3,4 B、1,2 C、5,6 D、1,2,3,4,5,6
  • 11、已知椭圆E:x2a2+y2b2=1(a>b>0)的左焦点为F , 上顶点为B , 离心率e=22 , 直线FB过点P(1,2).
    (1)、求椭圆E的标准方程;
    (2)、过点F的直线l与椭圆E相交于M,N两点(M、N都不在坐标轴上),若MPF=NPF , 求直线l的方程.
  • 12、某植物园种植一种观赏花卉,这种观赏花卉的高度(单位:cm)介于15,25之间,现对植物园部分该种观赏花卉的高度进行测量,所得数据统计如图所示.

    (1)、求a的值;
    (2)、若从高度在15,1717,19中分层抽样抽取5株,在这5株中随机抽取3株,记高度在15,17内的株数为X , 求X的分布列及数学期望EX
    (3)、以频率估计概率,若在所有花卉中随机抽取3株,记高度在15,17内的株数为Y , 求Y的数学期望.
  • 13、如图,在底面ABCD是矩形的四棱锥PABCD中,AB=1,BC=2,PA=PD=6 , 点P在底面ABCD上的射影为点O(OB在直线AD的两侧) , 且PO=2.

    (1)、求证:AOPD
    (2)、求平面ABP与平面BCP夹角的余弦值.
  • 14、已知双曲线C:x2a2y2b2=1a>0b>0的左、右焦点分别为F1F2O为原点,若以F1F2为直径的圆与C的渐近线的一个交点为P , 且F1P=3OP ,则C的离心率为.
  • 15、如图,在棱长为2的正方体ABCDA1B1C1D1中,O为正方体的中心,MDD1的中点,F为侧面正方形AA1D1D内一动点,且满足B1F//平面BC1M , 则(     )

    A、三棱锥D1DCB的外接球表面积为12π B、动点F的轨迹的线段为π2 C、三棱锥FBC1M的体积为定值 D、若过AMC1三点作正方体的截面ΩQ为截面Ω上一点,则线段A1Q长度的取值范围为263,22
  • 16、已知AB是圆O:x2+y2=2的直径,M,N是圆O上两点,且MON=120° , 则OM+ONAB的最小值为(       )
    A、0 B、-2 C、-4 D、43
  • 17、已知数列an=2n1,bn=3n2 , 则由这两个数列公共项从小到大排列得到的数列为cn , 则数列cn的通项公式为(       )
    A、cn=3n2 B、cn=4n1 C、cn=5n3 D、cn=6n5
  • 18、已知函数fx=2xx2+2.
    (1)、判断fx的奇偶性;
    (2)、用单调性定义证明fx1,1上单调递减;
    (3)、若fx的定义域为1,1 , 解不等式fx2+f1656x>0.
  • 19、已知函数fx=23sinxcosxcos2x+sin2xxR
    (1)、求fx的单调递增区间;
    (2)、当xπ6,5π12时,求fx的最大值和最小值;
    (3)、当xπ6,5π12时,方程fx=k恰有两个不同的实数根,求实数k的取值范围.
  • 20、摩天轮是一种大型转轮状的机械建筑设施,乘客坐在摩天轮的座舱(挂在轮边缘)里慢慢地往上转,可以从高处俯瞰四周景色.已知某摩天轮的半径为60米,其中心距离地面70米,开启后沿逆时针方向匀速旋转,乘客在座舱转到距离地面最近的位置进舱,转一周大约需要30分钟.

    (1)、设乘客P坐上摩天轮的座舱,开始转动t分钟后距离地面高度为h米,求在转动一周的过程中,h关于t的函数解析式;
    (2)、摩天轮在转动一圈的过程中,乘客距离地面超过100米的时间有多长?
上一页 576 577 578 579 580 下一页 跳转