相关试卷
-
1、已知定义在上的函数 , 其导函数为 , 且 , 若关于的不等式仅有个整数解,则实数的取值范围是
-
2、某大学开设选修课,要求学生根据自己的专业方向以及自身兴趣从6个科目中选择3个科目进行研修.已知某班级a名学生对科目的选择如表所示,则的一组值可以是 .
科目
国际金融
统计学
市场管理
历史
市场营销
会计学
人数
24
28
14
15
19
b
-
3、算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件“表示的四位数能被3整除”,“表示的四位数能被5整除”,则( )A、 B、 C、 D、
-
4、的展开式中的系数为( )A、30 B、 C、20 D、
-
5、已知a为实数,则“”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
-
6、在平行四边形中, , 则( )A、 B、 C、 D、
-
7、已知复数 , 则复数在复平面内对应的点位于( )A、第一象限 B、第二象限 C、第三象限 D、第四象限
-
8、设集合 , , 那么( )A、 B、 C、 D、
-
9、已知函数其中 . 从条件①、条件②、条件③这三个条件中选择两个作为已知条件,求:
条件①:函数最小正周期为;
条件②:函数图像关于点对称;
条件③:函数图像关于对称.
(1)、的单调递增区间;(2)、在区间的最大值和最小值. -
10、某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y(米)随着时间t( , 单位:小时)呈周期性变化,每天各时刻t的浪高数据的平均值如表:
t/时
0
3
6
9
12
15
18
21
24
y/米
1.0
1.4
1.0
0.6
1.0
1.4
0.9
0.6
1.0
(1)、从 , , 中选择一个合适的函数模型,并求出该拟合模型的解析式;(2)、如果确定在一天内的7时至19时之间,当浪高不低于0.8米时才进行训练,试安排恰当的训练时间. -
11、已知函数.(1)、请用“五点法”画出函数在一个周期上的图象;(2)、若 , 且 , 求的值.
-
12、某人在静水中游泳,速度为千米/小时,现在他在水流速度为4千米/小时的河中游泳.(1)、若他沿垂直于岸边的方向游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?(2)、他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度大小为多少?
-
13、已知.(1)、求的值;(2)、求的值.
-
14、使得成立的最小正数m的值为
-
15、在中,有 , 试判断的形状 .
-
16、在中, , 则 .
-
17、一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每30秒逆时针匀速转动一圈,如果当水轮上点P从水中浮现时(图中点)开始计时,则( )A、点P第一次到达最高点需要10秒 B、当水轮转动35秒时,点P距离水面2米 C、当水轮转动25秒时,点P在水面下方,距离水面2米 D、点P距离水面的高度h(米)与t(秒)的函数解析式为
-
18、(多选)已知向量 , 皆为非零向量,下列说法正确的是( )A、若与反向,且 , 则与同向 B、若与反向,且 , 则与同向 C、若与同向,则与同向 D、若与同向,则与同向
-
19、已知函数若函数()恰有个零点,分别为 , , , , 且 , 则的取值范围是( )A、 B、 C、 D、
-
20、若函数( , )的图象过点 , 相邻两条对称轴间的距离是 , 则下列四个结论中,正确的结论是( )A、 B、 C、为偶函数 D、为奇函数