• 1、如图,圆锥形玻璃容器内装满水,将这些水倒入(     )玻璃容器中正好装满。(玻璃厚度忽略不计)(单位: cm)

    A、 B、 C、 D、
  • 2、每年的6月5日是世界环境日,下面是六(2)班同学自己设计的环保宣传语,并写在方格中。图形(     )不能折成一个正方体。
    A、 B、 C、 D、
  • 3、下面说法正确的是(     )。
    A、两条直线不相交就一定平行 B、用三根同样长的铁丝分别围成长方形、正方形和圆,圆的面积最大 C、3时30分的时候,钟面上时针和分针的最小夹角正好是直角 D、两个长方体的体积相等,那么它们的表面积也相等
  • 4、在直角梯形中之中,涂色部分甲、乙面积相比,(     )。
    A、甲=乙 B、甲<乙 C、甲>乙 D、无法确定
  • 5、(     )组的三条线段能围成一个三角形。
    A、2cm,5cm,3cm B、7cm,3cm,2cm C、5cm,3cm,7cm D、3cm,9cm,4cm
  • 6、如下图,涂色部分的面积与正方形的面积的比是5:12,正方形的边长是6cm,DE 的长是cm。

  • 7、把一个棱长为6cm的正方体木块削成一个最大的圆柱,这个圆柱的体积是cm3。如果把这个圆柱再削成一个最大的圆锥,削去部分的体积是cm3
  • 8、一个立体图形从正面、左面看到的图形如下图,要搭成这样的立体图形,至少要用个小正方体,最多要用个小正方体。(不考虑相邻的正方体只有棱相连的情况)

  • 9、一个圆柱与一个圆锥的底面积相等,高也相等,它们的体积之和是12.8cm3。那么,圆柱的体积是cm3 , 圆锥的体积是cm3
  • 10、一个圆柱,如果把它的高截短3cm(如图①),表面积就减少了94.2cm2 , 这个圆柱的半径是cm;如果把原圆柱平均分成16份后拼成一个近似的长方体(如图②),表面积就比原来增加100cm2 , 原圆柱的体积是cm3

  • 11、一个圆柱的高是1.2dm,它的侧面展开图是长方形,长方形的长是12.56dm,这个圆柱的表面积是dm2 , 体积是dm3
  • 12、如下图,把一个圆等分后拼成一个近似长方形,这个长方形的周长是33.12cm,那么这个圆的面积是cm2

  • 13、一个长方体的长、宽、高的比是3:2:1,这个长方体的棱长之和是96cm,它的表面积是cm2 , 体积是cm3
  • 14、一根铁丝折成的长方形,宽是6dm,面积是48dm2。如果把这根铁丝折成正方形,那么面积是dm2
  • 15、一个三角形中三个内角的度数比是2:3:4,这个三角形中最大的角的度数是°,按角分这是一个三角形。
  • 16、下图中,∠1=°,∠2=°。

  • 17、3.5m=cm                480cm2=dm2       0.16km2=m2

    6.04L=mL                0.8m3=dm3         240mL=cm3

  • 18、高致病性禽流感是比“非典”传染速度更快的传染病,为了防止禽流感蔓延,防疫部门建议:离疫点3km范围内为疫区(或捕杀区),所有的禽类全部捕杀深埋;离疫点3km到5km范围内为免疫区,所有的禽类强制免疫,同时对捕杀区和免疫区内的村庄、道路实行全封闭管理。

    请你以下图中的点A为疫点,根据上面的叙述:

    (1)、用给出的线段比例尺,画出捕杀区。
    (2)、用给出的线段比例尺画出免疫区并用涂色表示。
    (3)、求出免疫区的面积。
  • 19、
    (1)、一艘轮船从海港O出发,以10千米/时的速度沿 方向行驶4 时到达A 岛,然后以15千米/时的速度沿 方向行驶2时到达B岛。
    (2)、轮船从海港O沿题1中的路线航行到B 岛一共行了多少千米?
    (3)、如果该船以14千米/时的速度按原路返回,那么返回海港O共需要多长时间?往返的平均速度是多少?

     

  • 20、如图,每个小正方形的边长表示1cm,按要求完成下列各题。

    (1)、点A的位置是(2,3),请你用数对表示点B的位置:()。
    (2)、将圆A 先向上平移4cm,再向平移cm就能和圆B重合。
    (3)、以点P 为一个顶点,画一个面积是12cm2的平行四边形。
上一页 75 76 77 78 79 下一页 跳转