相关试卷

  • 1、已知函数f(x)=32sin 2x-12cos 2x+1.

    (1)求f(x)在[0,π]上的单调递减区间;

    (2)若f(α)=25 , α∈π3,5π6 , 求sin 2α的值.

  • 2、为激发学生对航天的热爱,某校开展了航天知识竞赛活动.经过多轮比拼,最终只有甲,乙两位同学进入最后一轮.在最后一轮比赛中,有AB两道问题.其中问题A为抢答题,且只能被一人抢到,甲、乙两人抢到的概率均为12;问题B为必答题,甲、乙两人都要回答.已知甲能正确回答每道题的概率均为34 , 乙能正确回答每道题的概率均为23 , 且甲、乙两人各题是否答对互不影响.
    (1)、求问题A被回答正确的概率;
    (2)、记正确回答问题B的人数为X , 求X的分布列和数学期望.
  • 3、已知m>0 , 函数fx=ex2x+m的图象在点0,f0处的切线与两坐标轴围成的三角形的面积为2.
    (1)、求m的值;
    (2)、求fx1,2上的值域.
  • 4、已知函数fx=lnx,x>0,x2+1,x0,若方程fx=a有三个不同的实数根x1x2x3 , 且x1<x2<x3 , 则ax1x2x3的取值范围是.
  • 5、已知tanθ=12 , 则sin(θ+π)2sinθπ2cos(θ)+sin(πθ)的值为
  • 6、已知扇形的周长为16cm , 圆心角为2弧度,则此扇形的面积为cm2.
  • 7、已知函数fx=Asinωx+φ(其中A>0ω>0φ<π2)的部分图象如图所示,则(       )

    A、ω=2 B、fx的图象关于点11π12,0中心对称 C、fx=2cos2xπ6 D、fx5π6,π3上的值域为2,1
  • 8、已知函数fx=x3ax2+x+1没有极值点,则a的取值范围是(       )
    A、3,3 B、3,3 C、,3 D、3,+
  • 9、设aR , 则“a>2”是“函数fx=2x2+4ax+12,+上单调递增”的(       )
    A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
  • 10、已知数列anbn满足an+1an=λbn+1bnλ为非零常数),nN*
    (1)、若bn是等差数列,求证:数列an也是等差数列;
    (2)、若a1=2λ=3bn=sinnπ2 , 求数列an的前2025项和;
    (3)、设a1=b1=1b2=12λ>0bn=bn1+bn22n3,nN* , 求数列an的最大项和最小项.
  • 11、在某诗词大会的“个人追逐赛”环节中,参赛选手应从10个不同的题目中随机抽取3个题目进行作答.已知这10个题目中,选手甲只能正确作答其中的7个,选手乙正确作答每个题目的概率均为0.7,而且甲、乙两位选手对每个题目作答都是相互独立的.
    (1)、求选手乙正确作答2个题目的概率;
    (2)、求选手甲正确作答的题目个数的概率分布列和数学期望;
    (3)、从期望和方差的角度分析,你认为甲、乙两位选手谁晋级的可能性更大?请说明理由.
  • 12、已知椭圆G:x212+y24=1. 斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P3,2.
    (1)、求椭圆G的离心率;
    (2)、求PAB的面积.
  • 13、已知函数fx=13x3+x2+3x+a
    (1)、求fx的单调增区间和单调减区间
    (2)、若fx在区间3,4上的最小值为73 , 求实数a的值
  • 14、点A,B是椭圆C:x2a2+y2b2=1a>b>0的左、右顶点,M是椭圆上不同于A,B的任意一点,若直线AM,BM的斜率之积为49 , 则椭圆C的离心率为.
  • 15、盒中有4个白球,5个黄球,先随机地从中取出一个球,观察其颜色后放回,并另放入同色球2个,第二次再从盒中取一个球,则第二次取出的是黄球的概率为.
  • 16、已知离散型随机变量X的分布列为

    X

    -1

    0

    1

    P

    12

    16

    a

    Y=6X+1 , 则Y的数学期望EY=

  • 17、如图,在正四棱柱ABCDA1B1C1D1中,AA1=2AB=2,E是棱AA1的中点,P为线段BD1上的点(异于端点),且ED=PD , 则下列说法正确的是(       )

       

    A、ED1是平面EDC的一个法向量 B、BP=34BD1 C、P到平面ECD1的距离为618 D、二面角PECD的正弦值为32114
  • 18、关于x+2x5的展开式,下列结论正确的是(       )
    A、所有的二项式系数和为16 B、所有项的系数和为243 C、只有第3项的二项式系数最大 D、x的系数为40
  • 19、已知函数fx=lnx+1ax有两个零点x1,x2 , 且x1<x2 , 则下列命题正确的是(       )
    A、a>1 B、x1+x2<2a C、x1x2<1 D、x2x1>1a1
  • 20、在各项均为正数的等比数列an中,已知a2>1 , 其前n项之积为Tn , 且T20=T10 , 则Tn取得最大值时,则n的值为(       )
    A、15 B、16 C、29 D、30
上一页 15 16 17 18 19 下一页 跳转