• 1、已知正四棱锥的所有顶点都在同一个球面上,若该棱锥的高为1,底面边长为2,则球的体积为(     )
    A、9π B、92π C、94π D、278π
  • 2、记Sn为等差数列an的前n项和,若a3+a7=10a5a9=65 , 则Snn=(     )
    A、14n B、n2 C、12n D、n4
  • 3、已知向量a=3,4b=x,2 , 且ab , 则x的值为(     )
    A、83 B、83 C、38 D、38
  • 4、已知1+iz=4 , 则z=(     )
    A、2+2i B、22i C、2+2i D、22i
  • 5、下列函数中为奇函数的是(     )
    A、y=x+1 B、y=cosx C、y=tan2x D、y=3x
  • 6、已知集合A=x1<x6B=2,4,6,8 , 则AB=(     )
    A、6 B、2,4 C、2,4,6 D、1,2,4,6
  • 7、对于一个递增正整数数列an , 如果它的奇数项为奇数,偶数项为偶数,则称它是一个交错数列.规定只有一项且是奇数的数列也是一个交错数列.将每项都取自集合1,2,,n的所有交错数列的个数记为An . 例如,当n=1时,取自集合1的交错数列只有1一种情况,则A1=1;当n=2时,取自集合1,2的交错数列有1和1,2两种情况,则A2=2
    (1)、求A3A4的值;
    (2)、证明:取自集合1,2,,nn3的首项不为1的交错数列的个数为An2
    (3)、记数列An的前n项和为Sn , 求使得Sn>2025成立的n的最小值.
  • 8、如图1,已知抛物线C:y2=2pxp>0的焦点为F , 准线交x轴于点D , 过点F作倾斜角为θ的直线交抛物线于A,B两点(点A在第一象限).当θ=π2时,OA=5

    (1)、求抛物线C的方程;
    (2)、如图2,把ADF沿DF翻折为PDF , 使得二面角PDFB的大小为2π3

    ①若θ=π3 , 求直线BD与平面PBF所成角的正弦值;

    ②证明:三棱锥DPBF的体积为定值.

  • 9、近年来,中国新能源汽车产业,不仅技术水平持续提升,市场规模也持续扩大,取得了令人瞩目的成就,国产新能源汽车正逐步引领全球新能源汽车的发展潮流.某新能源汽车制造企业对某地区新能源汽车的销售情况进行了调研,数据如下:

    时间

    202312

    20241

    20242

    20243

    20244

    月份代码x

    1

    2

    3

    4

    5

    销量y/千辆

    14

    15

    16

    18

    19

    (1)、若yx线性相关,求y关于x的线性回归方程,并估计该地区新能源汽车在2025年1月份的销量;
    (2)、该企业为加强新能源汽车宣传推广,计划引进入工智能工具,并对宣传部门员工进行人工智能工具使用培训.为节约培训成本,需要将宣传部门部分员工调整至其他部门,剩余宣传部门员工全部参加培训.培训分为四期,每期培训的结果是否“优秀”相互独立,且每期培训中员工达到“优秀”标准的概率均为23 , 员工至少两期培训达到“优秀”标准,才能使用人工智能工具.该企业宣传部门现有员工100人,开展培训前,员工每人每年平均为企业创造净利润12万元,开展培训后,能使用人工智能工具的员工预计每人每年平均为企业创造净利润18万元,本次培训费每人1万元(计入年度部门成本).若要确保调整后第一年,宣传部门员工创造的年净利润不低于调整前,请应用概率知识进行决策,预计最多可调整多少人去其他部门?

    参考公式:b^=i=1nxix¯yiy¯i=1nxix¯2=i=1nxiyinx¯y¯i=1nxi2nx¯2,a^=y¯b^x¯

  • 10、已知ABC的内角A,B,C所对的边分别为a,b,c , 且acosA+bcosB=csinC
    (1)、证明:cosAcosB=sinC
    (2)、若ABC的面积为c210sinC , 求cosC
  • 11、F1,F2分别为双曲线x2y23=1的左、右焦点,A,C两点在双曲线上且关于原点对称(点A在第一象限),直线CF2与双曲线的另一个交点为点B , 若AF1BF2=6 , 则ABC的面积为
  • 12、若函数fx=x2+2x,x0x2+ax,x<0是奇函数,则ff3=
  • 13、设x表示不大于x的最大整数,记x=xx , 则对任意实数x,y , 有(       )
    A、x=x B、2x=2x C、x+yx+y D、xyxy
  • 14、已知F1,F2是椭圆C的两个焦点,PC上一点,且F1PF2=120,PF1=3PF2 , 则C的离心率为(       )
    A、134 B、138 C、74 D、78
  • 15、若空间中四个不同的平面α1,α2,α3,α4 , 满足α1α2,α2α3,α3α4 , 则下面结论一定正确的是(       )
    A、α1α4 B、α1α4 C、α1,α4既不垂直也不平行 D、α1,α4的位置关系不确定
  • 16、某学校为了了解学生美育培养的情况,用分层随机抽样方法抽样调查,拟从美术、音乐、舞蹈兴趣小组中共抽取30名学生,已知该校美术、音乐、舞蹈兴趣小组分别有20,30,50名学生,则不同的抽样结果共有(       )
    A、C204C306C5020 B、C205C3010C5015 C、C206C309C5015 D、C2010C3010C5010
  • 17、如图,我们把由平面内夹角成60的两条数轴OxOy构成的坐标系,称为“完美坐标系”. 设e1,e2分别为OxOy正方向上的单位向量,若向量OP=xe1+ye2 , 则把实数对 x,y叫做向量OP的“完美坐标”.

    (1)、若向量OP的“完美坐标”为34 , 求OP
    (2)、已知x1,y1x2,y2分别为向量ab的“完美坐标”. 证明:ab=x1x2+y1y2+12x1y2+x2y1
    (3)、若向量ab的“完美坐标”分别为x1,y1x2,y2 , 求证:a//b的充要条件是x1y2x2y1=0.
  • 18、在直角坐标系xOy中,已知点A2,0B0,23C2cosθ,sinθ , 其中θ0,π2
    (1)、若ABOC , 求tanθ的值;
    (2)、设点D1,0 , 求ACBD的取值范围.
  • 19、已知角θ的顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点p4m,3mm>0.
    (1)、求sinθcosθ的值;
    (2)、求sin(θ)sin(θ3π)cos(π+θ)sin(2πθ)cos(3πθ)sin2θ的值.
  • 20、已知向量a,b,c , 满足a=(2,1),b=(1,m),c=(n,1) , 且ab,a//c , 则mn=.
上一页 42 43 44 45 46 下一页 跳转