• 1、一定质量的理想气体从状态a开始,经abbcca三个过程后回到初始状态a,其pV图像如图所示。下列判断正确的是(  )

    A、气体在ab过程中做等温变化 B、气体在bc过程中内能增加 C、气体在ab过程和bc过程对外界做的功相等 D、气体在一次循环过程中会向外界放出热量
  • 2、关于教材中几幅图片说法正确的是(     )

    A、图甲的扩散现象说明水分子和墨水分子相互吸引 B、图乙所描出的折线是固体小颗粒在水中运动的轨迹 C、图丙麦克斯韦速率分布规律图中,①对应的温度大于②对应的温度 D、图丁玻璃板紧贴水面,弹簧测力计将其拉离水面时,拉力一定等于玻璃板的重力
  • 3、如图,滑雪者与装备的总质量为80kg,从静止开始沿山坡匀加速直线滑下,山坡倾角为37°,滑雪者受到的阻力(包括空气阻力和摩擦阻力)大小恒为80N。取g=10m/s2,sin37°=0.6,cos37°=0.8;求:

    (1)、雪面对滑雪者的支持力大小;
    (2)、滑雪者4s内的位移(假设山坡足够长)。
  • 4、如图所示,Q物块放置在水平地面上,上方连接一轻弹簧t=0时刻将P物块从弹簧的上端由静止释放.P向下运动距离为x0时,所受合外力为零;运动时间为t0时到达最低点.在P运动的过程中,不计空气阻力.下列关于P物块的速度v、相对于初始位置的位移x,Q物块所受弹簧的弹力F、对地面的压力N之间关系可能正确的是(       )

    A、 B、 C、 D、
  • 5、如图所示,带支架的平板小车沿水平面向左做直线运动,小球A用细线悬挂于支架前端,质量为m的物块B始终相对于小车静止在小车右端。B与小车平板间的动摩擦因数为μ。若某时刻观察到细线偏离竖直方向θ角,则此刻小车对物块B的作用力的大小为(重力加速度为g)(  )

       

    A、mg B、mg1+μ2 C、mgtanθ D、mgtan2θ+1
  • 6、某同学用智能手机中加速度传感器研究运动。用手掌托着手机,打开加速度传感器,手掌从静止开始迅速上下运动,得到竖直方向的加速度随时间变化图像如图所示,以竖直向上为正方向,重力加速度g =10m/s2 , 由此可判断出手机(  )

    A、t1时刻运动到最高点 B、t2时刻运动到最高点 C、t3时刻对手掌的压力为零 D、t1~t3时间内,受到的支持力先减小再增大
  • 7、关于光的干涉、衍射、偏振等现象,下列说法正确的是(  )
    A、因为激光的方向性好,所以激光不能发生衍射现象 B、光照射不透明圆盘的阴影中心出现亮斑是光的衍射现象 C、白光经过狭窄的单缝得到彩色图样是光的干涉现象 D、利用偏振片可以观察到光的偏振现象,说明光是纵波
  • 8、如图所示,圆筒固定在水平面上,圆筒底面上有一与内壁接触的小物块,现给物块沿内壁切向方向的水平初速度。若物块与所有接触面间的动摩擦因数处处相等。则物块滑动时动能Ek与通过的弧长s的图像可能正确的是(  )

    A、 B、 C、 D、
  • 9、一个带正电的小球用绝缘细线悬挂于O点,在其右侧放置一个不带电的枕形导体时,小球将在细线与竖直方向成θ角处保持静止,如图所示。若将导体的A端接地,当重新平衡时,细线与竖直方向的夹角将(  )

    A、不变 B、变大 C、变为零 D、变小但不为零
  • 10、如图所示,轻质弹簧的两端分别与小物块A、B相连,并放在倾角为θ的固定斜面上,A靠在固定的挡板P上,弹簧与斜面平行,A、B均静止。将物块C在物块B上方与B相距x处由静止释放,C和B碰撞的时间极短,碰撞后粘在一起不再分开,已知A、B、C的质量均为m,弹簧劲度系数为k,且始终在弹性限度内,不计一切摩擦,则为保证A不离开挡板,x的最大值为(  )

    A、4mgsinθk B、8mgsinθk C、4mgk D、8mgk
  • 11、如图所示,两颗彗星仅受太阳引力作用绕太阳运行,彗星1轨道为圆,彗星2轨道为椭圆。下列说法正确的是(       )

    A、彗星2在近日点的速度小于远日点的速度 B、彗星1的速度大于彗星2在远日点的速度 C、彗星1、彗星2与太阳的连线在相等时间内扫过的面积一定相等 D、彗星1受太阳的万有引力一定小于彗星2在近日点受太阳的万有引力
  • 12、阻拦索系统是舰载机安全降落在航空母舰上的关键技术,学习小组参照早期阻拦索原理,搭建了如图甲所示的模型。着陆区两侧各有一方形槽,对称放置质量m=1kg的方形物块各一个,槽宽略大于物块宽度。物块与槽底及侧壁间的动摩擦因数均为μ1=0.5,最大静摩擦力等于滑动摩擦力。两物块间连接弹性绳,弹性绳弹力满足胡克定律,劲度系数k=125N/m。弹性绳原长L0=0.8m,恰等于两物块上结点间距。航模质量M=2kg,滑行时与地面间的动摩擦因数μ2=0.25,忽略空气阻力,重力加速度g取10m/s2。航模降落后沿着陆区中线水平滑行,以v0=6m/s的初速度钩住弹性绳,速度减为零后脱钩,弹性绳始终处于水平面内。

    (1)、航模钩住弹性绳后滑行x=0.3m时,速度减为v1=42m/s , 物块尚未滑动。求此时绳内的弹性势能;
    (2)、当弹性绳长度达到L=1.2m时,求物块的加速度大小(结果可用根式和分数式表达)。
    (3)、如图乙所示为单个物块受到的总摩擦力随时间t的变化图像,t1=0.051s时开始滑动,t2=0.133s时总摩擦力达到最大值,两段图线下方围成的面积分别为S1=0.2N·s,S2=1.9N·s,求t2时刻航模的速度大小(保留2位有效数字)。

  • 13、如图所示,倾角为30°的斜面内固定有平行轨道ab、cd,与固定在水平面上的平行轨道be、df在b、d两点平滑连接,ab、be均与bd垂直,平行轨道间距均为L。ef间连接一定值电阻,阻值为R。水平面内有等腰直角三角形hok区域,h、k均在轨道上,hk//bd,∠hok=90°,该区域内有方向竖直向下的均匀磁场Ⅰ,磁感应强度大小随时间变化关系如图乙所示。轨道abdc区域有方向垂直斜面向上的匀强磁场Ⅱ。将质量为m的导体棒NQ垂直放在倾斜轨道上,导体棒距水平面高为H,在0<t<t0时间内棒刚好静止。t0时刻撤去磁场Ⅱ,导体棒沿轨道滑动,通过bd处无能量损失。重力加速度为g,忽略导体棒及轨道电阻,轨道均光滑。

    (1)、试计算t02时刻导体棒所在回路中的电动势大小;
    (2)、求Ⅱ区磁感应强度大小;
    (3)、为使导体棒匀速通过磁场Ⅰ区,对导体棒施加沿运动方向的水平外力,从导体棒进入Ⅰ区开始计时,请推导水平外力的功率随时间变化关系。
  • 14、2025年第九届亚洲冬季运动会在哈尔滨举行,开幕式上的“冰灯启梦”表演蔚为壮观。现设计了一款用某种材料制作的正方体“冰灯”,俯视如图甲所示,是一个边长为L=20cm的正方形,中心O处有一点光源。对该正方形所在平面内的光线进行研究,发现每条边上只有长度d=15cm范围内有光线射出。sin37°=0.6,sin8°=210 , 不计二次反射、折射。求:

    (1)、该材料的折射率是多少?
    (2)、如图乙所示,将点光源换成圆形线光源,置于正方形几何中心,线光源上每一点都可以看作点光源。要让四条边上各处均有光线射出,线光源的最小半径r是多少?
  • 15、学习小组组装一台体重测量仪,进行如下操作。
    (1)、应变片为体重测量仪的核心元件,当对台秤施加压力时,应变片形状改变,其阻值增大。为测量应变片在无形变时的阻值,实验室提供了如下实验器材:

    A.电源(恒压输出12V)

    B.电流表(量程0~60mA,内阻为10Ω)       

    C.电压表(量程0~3V/15V,内阻约3kΩ/15kΩ)

    D.滑动变阻器(最大阻值为10Ω)

    E.待测应变片Rx(阻值约几百欧)

    H.开关S、导线若干

    请完善实验步骤:

    ①为得到多组数据并使测量结果尽量精准,请在图1中用笔画线代替导线连接成完整电路:

    ②闭合开关S,调节滑动变阻器,记下电压表和电流表的示数。某次测量中电压表指针如图2所示,读数为V;

    ③正确操作后,对多组数据进行处理,得到应变片的阻值为300Ω

    (2)、查阅相关资料得知体重测量仪的原理如图3所示,现进行组装和校准。其中R1为滑动变阻器,R4为上述应变片,定值电阻R2、R3阻值分别为1000Ω、500Ω。当台秤受到压力时,测量电路将电阻增加量转化为电压UCD信息,再转换成体重输出。已知压力与应变片电阻增加量的关系为F=k△R,k=300N/Ω。       

    ①适当调节R1 , 使UcD=0,这时输出体重值为零,则滑动变阻器接入电路的阻值为Ω:

    ②该应变片阻值增加量ΔR的变化范围为0~6Ω,该体重仪的最大测量值为N;

    ③使用中,由于故障导致R2阻值增大,此时体重的测量结果与真实值比较(选填“偏大”“偏小”或“不变”)。

  • 16、
    (1)、用单摆测量重力加速度,图甲所示的各项实验操作中合理的是_______

    A、采用如图a所示的悬挂方式 B、如图b,在小球摆到最高点时开始计时 C、如图c,用竖直放置的直尺和三角板测量球心到悬点间距离,作为摆长
    (2)、采用如图乙所示的实验装置继续探究,取一根棉线从金属戒指中穿过,两端悬于细杆上。实验步骤如下:

    ①用刻度尺测得两个悬点距离为x,两悬点间棉线总长为s

    ②轻敲戒指使之在垂直于纸面的竖直平面内摆动,摆角小于5°

    ③记录摆动30个周期的总时间,计算周期数值。多次测量,得到周期的平均值T

    ④如图丙所示,选用游标卡尺的测量爪(选填“A”或“B”)测量戒指为径。十分度游标卡尺上的示数如图丁所示,那么该戒指的内径d=mm

    ⑤等效摆长L为

    A.s+d2        B.s2x2+d2             C.s2x2+d2

    ⑥改变棉线长度,多次重复上述实验步骤

    ⑦将数据绘制成T2—L图像,如图戊所示,请将图中数据点进行拟合(画在答题纸上)

    ⑧经计算得到重力加速度的测量值为m/s2(π2取9.87,保留3位有效数字)

  • 17、如图所示,在三维坐标系Oxyz中,z<0的空间同时存在沿z轴负方向的匀强电场和沿x轴负方向的匀强磁场I,磁感应强度大小为B0 , 在z>0的空间存在沿y轴正方向的匀强磁场II,磁感应强度大小为12B0。带正电的粒子从M(a,0,a)点以速度v0沿y轴正方向射出,恰好做直线运动。现撤去电场,继续发射该带电粒子,恰好垂直xOy平面进入z>0空间。不计粒子重力,正确的说法是(  )

    A、电场强度大小为B0v0 B、带电粒子的比荷为2v0aB0 C、第二次经过xOy平面的位置坐标为(a,0,a D、粒子第三次经过xOy平面的位置与O点距离为32a
  • 18、如图a所示是用电泳技术分离蛋白质的装置,溶液中有上下正对放置的平行金属板电极,溶液中甲、乙两个蛋白质颗粒与上下极板恰好等距。甲蛋白质颗粒质量是乙的两倍,带电量与pH值的关系如图b所示。未接通极板电源时,甲、乙颗粒均悬浮。现调节溶液pH=3,接通电源,不计粘滞阻力和甲乙之间的作用力。对于两种蛋白质颗粒,正确的说法是(  )

    A、乙比甲先到达极板 B、甲、乙的电势能均减小 C、甲、乙受到的电场力方向相同 D、增大pH值,甲受到的电场力变大
  • 19、一定质量的理想气体经历A→B→C→A的状态变化过程,压强和体积的变化情况如图所示。正确的说法是(  )

    A、状态A与状态C温度相同 B、B→C过程气体温度降低 C、C→A过程气体放出热量 D、A→B过程外界对气体做功
  • 20、处于关闭状态的三扇推拉门,质量均为20kg。第一扇门在沿水平轨道方向的2.0N 推力作用下匀速运动,与第二扇门即将重合时发生碰撞,碰撞时间0.5s,碰后两扇门结为一体,此后两扇门滑行0.4m后速度减为零,未与第三扇门接触。推力始终存在且保持不变,轨道对两扇门的滑动摩擦力相同。不正确的说法是(  )

    A、两扇门结为一体后的加速度为0.05m/s2 B、两扇门结为一体瞬间共同速度为0.2m/s C、与第二扇门碰撞前,第一扇门速度为0.4m/s D、两扇门碰撞过程中产生的平均冲击力大小为10N
上一页 316 317 318 319 320 下一页 跳转