相关试卷

  • 1、如图所示,“夸父一号”卫星和另一颗卫星分别沿圆轨道、椭圆轨道绕地球逆时针运动,圆的半径与椭圆的半长轴相等且为a,两轨道相交于A、B两点。已知“夸父一号”卫星做圆周运动的速度大小为v1 , 沿椭圆轨道运行的卫星在近地点和远地点的速度大小分别为v2v3 , 不考虑地球自转带来的影响,下列说法中正确的是(  )

    A、v1v2的大小关系为v1<v2 B、v2v3的大小关系为v2<v3 C、“夸父一号”卫星在A、B两点处加速度相同 D、“夸父一号”卫星的周期小于椭圆轨道卫星的周期
  • 2、光照在某些金属上时,会使电子从金属表面逸出,逸出过程中,电子需要克服原子核对它的束缚所做的功叫做逸出功。利用图示装置可测量某种金属材料K的逸出功,分别用频率为2v和3v的光照射材料K,通过电压表读数可测得这两种光照情况下的遏止电压之比为1:2 , 普朗克常量为h,则该金属材料K的逸出功是(  )

    A、0.5hv B、hv C、1.5hv D、2hv
  • 3、微核电池是一种利用放射性同位素的放射性衰变释放能量的电池,使用寿命可长达近百年。一种常见的微核电池的原料是95243Am , 其衰变方程为95243Am93239Np+X。则下列说法正确的是(  )
    A、核反应方程中的X为电子 B、95243Am的电荷数比93239N多4个 C、95243Am的中子数比93239N多2个 D、核反应前后质量和电荷量均守恒
  • 4、如图所示,左侧圆弧光滑导轨与右侧足够长的平行水平光滑导轨平滑连接,导轨电阻不计。金属棒b和c静止放在水平导轨上,b、c两棒均与导轨垂直。图中虚线de右侧存在方向竖直向上、范围足够大的匀强磁场,绝缘棒a垂直于圆弧导轨由静止释放,释放位置与水平导轨的高度差为h=1.8m,之后与静止在虚线de处的金属棒b发生弹性碰撞,金属棒b进入磁场后始终未与金属棒c发生碰撞,已知金属棒b和绝缘棒a的质量均为m=3kg,金属棒c质量是金属棒b质量的一半,重力加速度取g=10m/s2 , 求:

    (1)绝缘棒a与金属棒b碰撞后瞬间两棒的速度大小;

    (2)金属棒b进入磁场后,其加速度为最大加速度的一半时的速度大小;

    (3)整个过程两金属棒b、c上产生的总焦耳热。

  • 5、如图所示,矩形导线框abcd位于竖直放置的通电长直导线附近,导线框和长直导线在同一竖直平面内,导线框的ab和cd两边与长直导线平行。在下面的四种情况中,导线框内没有感应电流的是(  )

    A、导线框在纸面内竖直下落 B、导线框在纸面内向右平移 C、导线框以ab边为轴向纸外转动 D、导线框不动,增大长直导线中的电流
  • 6、为测定某种材料的电阻率,设计如下实验:图(乙)为测量原理电路图,R1、R2是由长度相同、表面涂有绝缘膜(厚度不计)的电阻丝并排紧密绕制在同一根圆柱形绝缘陶瓷棒上的螺旋电阻(图甲),R1材料电阻率为ρ,R2由待测材料制成,R0为滑动变阻器,V1、V2为已知量程的电压表。请回答下列问题:

    (1)、在闭合开关前,滑动变阻器滑片应滑到(选填“左端”或“右端”)。
    (2)、测得R1的螺旋长度为l1 , R2的螺旋长度为l2 , 两电阻的匝数相同,则制成电阻R1与R2的电阻丝的横截面之比为
    (3)、某次测量中V1、V2表的示数分别为U1、U2 , 则待测电阻丝的电阻率(用U1、U2、l1、l2、ρ表示)。
    (4)、考虑V1、V2表的内阻对实验误差的影响,在电路中加了一个灵敏电流计G(图丙)来判断。闭合开关,灵敏电流计中有从a向b的微小电流,则(3)中测量结果相对于真实值(选填“偏大”、“不变”或“偏小”)。
  • 7、如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m的油滴a和b,带电量为+q的a水平向右,不带电的b竖直向上.b上升高度为h时,到达最高点,此时a恰好与它相碰,瞬间结合成油滴p.忽略空气阻力,重力加速度为g.求

    (1)油滴b竖直上升的时间及两油滴喷出位置的距离;

    (2)匀强电场的场强及油滴a、b结合为p后瞬间的速度;

    (3)若油滴p形成时恰位于某矩形区域边界,取此时为t=0时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T0(垂直纸面向外为正),已知P始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响)

  • 8、如图为一款热销“永动机”玩具示意图,其原理是通过隐藏的电池和磁铁对小钢球施加安培力从而实现“永动”。小钢球从水平光滑平台的洞口M点静止出发,无磕碰地穿过竖直绝缘管道后从末端N点进入平行导轨PP'QQ' , 电池、导轨与小钢球构成闭合回路后形成电流,其中电源正极连接导轨PQ,负极连接P'Q';通电小钢球在底部磁场区域受安培力加速,并从导轨的圆弧段末端QQ'抛出;然后小钢球恰好在最高点运动到水平光滑平台上,最终滚动至与挡板发生完全非弹性碰撞后再次从M点静止出发,如此循环。已知导轨末端QQ'与平台右端的水平、竖直距离均为0.2m,小钢球质量为40g,在导轨上克服摩擦做功为0.04J,其余摩擦忽略不计,重力加速度g取10m/s2 , 求:

    (1)、磁铁的N极朝向;
    (2)、小钢球从导轨末端QQ'抛出时速度大小;
    (3)、为了维持“永动”,每个循环需安培力对小球做功的最小值。
  • 9、如图所示,在天河校区高三9班教室门前的栏杆上,用细绳绑着一只有助于舒缓压力的“奶龙”气球。观察发现,白天温度较高时,它能向上飘起,细绳拉紧;晚上温度骤降时,它不能向上飘起,细绳松弛。假设大气压强恒为p0 , 白天气温为T1 , 晚上气温为T2 , 空气密度为ρ,重力加速度为g。气球内封闭气体可视作理想气体,内部气压保持与大气压强相等,理想气体状态方程的比例常数为C。一定质量的同种理想气体的内能只与温度有关,U=kT(k为常数)。求:

    (1)、气球所受空气浮力的变化量;
    (2)、气球放出的热量。
  • 10、在太空,物体完全失重,用天平无法测量质量。如图,某同学设计了一个动力学方法测量物体质量的实验方案,主要实验仪器包括:气垫导轨、滑块、轻弹簧、标准砝码、光电计时器和待测物体,主要步骤如下:

    (1)调平气垫导轨,将弹簧左端连接气垫导轨左端,右端连接滑块;

    (2)将滑块拉至离平衡位置20cm处由静止释放,滑块第1次经过平衡位置处开始计时,第21次经过平衡位置时停止计时,由此测得弹簧振子的振动周期T;

    (3)将质量为m的砝码固定在滑块上,重复步骤(2);

    (4)依次增加砝码质量m,测出对应的周期T,实验数据如下表所示,在图中绘制T2—m关系图线

    m/kg

    T/s

    T2/s2

    0.000

    0.632

    0.399

    0.050

    0.775

    0.601

    0.100

    0.893

    0.797

    0.150

    1.001

    1.002

    0.200

    1.105

    1.221

    0.250

    1.175

    1.381

    (5)由T2—m图像可知,弹簧振子振动周期的平方与砝码质量的关系是(填“线性的”或“非线性的”);

    (6)取下砝码后,将待测物体固定在滑块上,测量周期并得到T2 = 0.880s2 , 则待测物体质量是kg(保留3位有效数字);

    (7)若换一个质量较小的滑块重做上述实验,所得T2—m图线与原图线相比将沿纵轴移动(填“正方向”“负方向”或“不”)。

  • 11、硅光电池是一种可将光能转换为电能的器件。某同学用如图所示电路探究硅光电池的路端电压U与总电流I的关系。图中R0为已知定值电阻。电压表视为理想电压表。S闭合后:

    (1)、若电压表V2的读数为U0 , 则I=。(用题中所给字母表示)
    (2)、实验一:用一定强度的光照射硅光电池,调节滑动变阻器,通过测量得到该电池的U-I曲线a,如图所示。由此可知电池内阻(填“是”或“不是”)常数,短路电流为mA,电动势为V。
    (3)、实验二:减小“实验一”中光的强度,重复实验,测得U-I曲线b。当滑动变阻器的电阻为某值时,若“实验一”中的路端电压为1.5V。那么实验二中外电路消耗的电功率为mW(计算结果保留两位有效数字)。
  • 12、如图甲所示理想变压器原线圈与两根平行金属导轨相连,副线圈与定值电阻和交流电动机相连,交流电流表A1 A2A3都是理想电表,定值电阻的阻值r2=12Ω,电动机线圈的电阻r3=0.8Ω。在原线圈所接导轨的虚线间有垂直导轨面的匀强磁场,磁感应强度大小B=2T,导轨间距为l=1m,电阻不计,在磁场中两导轨间有一根金属棒垂直横跨在导轨间,棒的电阻r1=2Ω,棒在磁场内沿导轨运动的vt图像如图乙所示,在金属棒运动过程中,电流表A2示数为2A,A3示数为5A,则下列说法正确的是(  )

       

    A、变压器副线圈输出的电流频率为2Hz B、电动机的输出机械功率为100W C、电流表A1的示数只能为14A D、变压器原副线圈匝数比可能为7∶6
  • 13、如图,水平地面上有一质量为m的“”形木板A,其水平部分表面粗糙,长度为2R,14圆弧部分的半径为R、表面光滑,两部分平滑连接。现将质量也为m、可视为质点的滑块B从圆弧的顶端由静止释放。若地面粗糙,滑块B恰好能滑到此木板的最左端,此过程中木板A始终处于静止状态,重力加速度大小为g,则下列说法中正确的是(  )

    A、此过程中,A对水平地面的最大压力为4mg B、B与A水平部分上表面的动摩擦因数为0.2 C、若水平地面光滑,滑块B将从木板A的左端滑出 D、若水平地面光滑,A向右运动的最大位移为1.5R
  • 14、如图,虚线表示位于O点的点电荷Q产生电场的等势面,相邻等势面间电势差大小相等且为4V,一电子在电场力作用下的运动轨迹如图中实线所示。已知电子经过a点时的动能为10eV,经过f点时电势能为-20eV,下列说法正确的是(  )

    A、点电荷Q带负电 B、电子经过c点时动能为18eV C、电子经过d点时电势能为-28eV D、电子可能经过电势为4V的等势面
  • 15、图中a、b为两根互相垂直的无限长直导线,导线中通有大小相等、方向如图的电流,O为a、b最短连线上的中点,A、B、C、D分别是纸面内正方形的四个顶点。下列选项正确的是(  )

    A、O点的磁感应强度为0 B、A点与C点磁感应强度的大小相等 C、B点与D点磁感应强度的方向相同 D、撤去b导线,O点磁感应强度的方向垂直纸面向里
  • 16、如图,在天花板下用细线悬挂一半径为R的金属圆环,圆环处于静止状态,圆环一部分处在垂直于环面的磁感应强度大小为B的水平匀强磁场中,环与磁场边界交点A、B与圆心O连线的夹角为120° , 此时悬线的张力为F.若圆环通电,使悬线的张力刚好为零,则环中电流大小和方向是

    A、电流大小为3F3BR , 电流方向沿顺时针方向 B、电流大小为3F3BR , 电流方向沿逆时针方向 C、电流大小为3FBR , 电流方向沿顺时针方向 D、电流大小为3FBR , 电流方向沿逆时针方向
  • 17、一束单色光在不同条件下会形成很多有趣的图样。下列四幅图分别为光通过圆孔、光照射在不透光圆盘上、光通过双缝、光通过单缝后,在光屏上形成的图样。图样中有一幅形成原理与其他不同,该图样是(  )
    A、 B、 C、 D、
  • 18、2024年是量子力学诞生一百周年,量子力学已经对多个领域产生了深远的影响,包括物理学、化学、计算机科学、通信技术和生物学,量子力学已成为现代科学的重要基石之一。下列关于量子力学创立初期的奠基性事件中说法正确的是(       )
    A、黑体辐射电磁波的强度的极大值随着温度的降低向波长短的方向移动 B、发生光电效应时,逸出光电子的最大初动能与入射光的频率成正比关系 C、德布罗意的物质波假设认为一切实物粒子都具有波粒二象性 D、根据玻尔原子理论,氢原子由高能级向低能级跃迁时,只能吸收特定频率的光
  • 19、一粒子源于D处不断释放质量为m , 带电量为+q的离子,其初速度视为零,经电压为U的加速电场加速后,沿图中半径为R1的圆弧形虚线通过四分之一圆弧形静电分析器(静电分析器通道内有均匀辐向分布的电场)后,从A孔正对绝缘圆筒横截面的圆心O射入绝缘圆筒。绝缘圆筒的半径为R2 , 圆筒的该横截面在粒子运动所在的竖直平面内,在该横截面内圆筒上有三个等间距的小孔A B C , 圆筒内存在着垂直纸面向里的匀强磁场,不计重力。求:

    (1)、离子离开加速器的速度大小及静电分析器通道内虚线处电场强度E的大小;
    (2)、若离子进入绝缘圆筒后,直接从B点射出,则圆筒内的磁感应强度B1为多大;
    (3)、为了使离子从B点射出后能从C点返回筒内,可在圆筒外直径PQ的上侧加一垂直纸面向外的匀强磁场,磁感应强度大小为B2 , 若粒子在运动中与圆筒外壁碰撞,将以原速率反弹,求B2可能的大小。
  • 20、如图甲,为了从筒中倒出最底部的羽毛球,将球筒竖直并筒口朝下,从筒口离地面h=1.8m的高度松手,让球筒自由落体,撞击地面,球筒与地面碰撞时间t=0.01s , 碰撞后球筒不反弹。已知球筒质量M=90g , 球筒长度L=40cm , 羽毛球质量为m=6g , 羽毛球和球筒之间最大静摩擦力fm=0.3N , 最大静摩擦力等于滑动摩擦力,为简化问题把羽毛球视为质点,空气阻力忽略不计,g10m/s24.82=23.04 , 求:

    (1)、碰撞后羽毛球是否到达球筒口;
    (2)、碰撞过程中,地面对球筒的平均冲击力为多大;
    (3)、如图乙所示,某人伸展手臂握住球筒底部,使球筒与手臂均沿水平方向且筒口朝外,筒身离地高度仍为h=1.8m , 他以身体躯干为中心轴逐渐加速转动直至羽毛球刚好飞出,筒口离中心轴距离为R=1.2m , 则球落地后距离中心轴有多远?
上一页 151 152 153 154 155 下一页 跳转