相关试卷

  • 1、某同学在学习了椭圆的标准方程后得到启发,借助几何画板画出了平面上到点F11,0,F21,0的距离的倒数之和等于1的点P的轨迹,如图所示,则(       )

    A、2PF12+2 B、PO的最小值为2 C、当点P不在坐标轴上时,点P在椭圆x24+y23=1的外部 D、当点P的坐标为x0,y0时,PF1PF2随着x0的增大而增大
  • 2、已知函数fx=x3ax23xa>0 , 则(       )
    A、fx有两个极值点 B、fx在区间0,1上单调递减 C、fx的图象上不存在关于0,1对称的两点 D、fx的极小值大于7时,a的取值范围为0,94
  • 3、某汽车公司为了宣传A,B两款新能源汽车,邀请8名业内人士试驾,就新款汽车的驾乘感受进行评分,最高分数为10分.试驾结束后,评分如下表:

    A

    9.9

    9.5

    9.6

    9.4

    9.7

    9.8

    9.9

    9.7

    B

    9.7

    9.5

    9.8

    9.7

    9.7

    9.9

    9.8

    9.6

    下列说法正确的是(       )

    A、A,B两款汽车评分数据的众数相同 B、A,B两款汽车评分数据的中位数相同 C、若将评分数据乘以10,则新数据的方差为原数据的方差的10倍 D、A款汽车评分数据去掉一个最低分和一个最高分后所得数据的极差小于原数据的极差
  • 4、设函数fx=3sinx+cosxx2 , 则fx的零点个数为(       )
    A、2 B、3 C、4 D、5
  • 5、已知椭圆C:x2a12+y2b12=1a1>b1>0与双曲线E:y2a22x2b22=1a2>0,b2>0有相等的焦距,离心率分别为e1,e2 , 它们的四个公共点刚好是正方形的四个顶点,则e2e1的最小值为(       )
    A、1 B、12 C、13 D、14
  • 6、已知0<a<1<b , 则(       )
    A、ba<ab<aa<bb B、ab<aa<ba<bb C、bb<ab<aa<ba D、ab<ba<aa<bb
  • 7、已知动点P的轨迹所构成的图形为图中阴影区域,其外边界为一个边长为4的正方形,内边界由四个直径相同且均与正方形一边相切的圆的四段圆弧组成,如图所示,则该阴影区域的面积为(       )

       

    A、164π B、4+π C、4+2π D、122π
  • 8、已知两个不同的平面α,β , 一条直线m , 下列命题是假命题的是(       )
    A、αβ,mα , 则mβ B、mα,mβ , 则αβ C、αβ,mα , 则mβ D、mα,mβ , 则αβ
  • 9、已知向量a=1,2ba+b=1 , 则a+2b=(       )
    A、3 B、4 C、5 D、6
  • 10、已知集合A=xx2x<2,B=yNy=x3,xA , 则AB=(       )
    A、1,2 B、0,2 C、1 D、0,1
  • 11、已知aR,i是虚数单位,a+2ia2i=4 , 则a=(       )
    A、2 B、1 C、0 D、3
  • 12、某工厂由甲、乙两条生产线来生产口罩,产品经过质检后分为合格品和次品,已知甲生产线的次品率为4% , 乙生产线的次品率为7% , 且甲生产线的产量是乙生产线产量的2倍.现在从该工厂生产的口罩中任取一件,则取到合格品的概率为
  • 13、在x25的展开式中,x2的系数为 , 各项系数之和为
  • 14、已知函数f(x)及其导函数f'(x)的定义域均为R , 记g(x)=f'(x) , 若f(x)关于直线x=1对称,g(3+2x)为奇函数,则(       )
    A、f'(1)=0 B、g(2023)+g(2025)=1 C、g(3)=0 D、g(2023)=0
  • 15、已知向量a=1,2,b=0,3 , 如果向量a+2baxb垂直,则实数x的值为(  )
    A、1 B、-1 C、1724 D、1724
  • 16、在锐角ABC中,角A,B,C的对边分别为abc , 已知a=23cosC+(cosB3sinB)cosA=0.
    (1)、求角A的大小;
    (2)、求b+c的取值范围.
  • 17、如图,在四棱锥PABCD中,ABADAB//CDPC=AB=2CD=2AD=2PC底面ABCDEPB上一点.

    (1)、求证:平面PAC平面PBC
    (2)、若EPB的中点,求平面PAC与平面ACE的夹角的正弦值.
  • 18、如图,在ABC中,AB=3AC=4A=60° , 点D,E满足AD=2DBAC=2CE , AC边上的中线BM与DE交于点O.设AB=aAC=b.

    (1)、用向量ab表示BMDE
    (2)、求MOE.
  • 19、如图所示,在直三棱柱ABCA1B1C1中,AA1=1AB=BC=3cosABC=13 , 点P是线段A1B上的一动点,则线段AP+PC1的最小值为

  • 20、如图是函数fx=Asinωx+φA>0,ω>0,φ<π2的部分图象,则(       )

    A、fx的最小正周期为π B、x=5π6是函数y=fx的一条对称轴 C、将函数y=fx的图象向右平移π3个单位后,得到的函数为奇函数 D、若函数y=ftxt>00,π上有且仅有两个零点,则t56,43
上一页 23 24 25 26 27 下一页 跳转