相关试卷
-
1、在中,角所对的边分别为 , 若 , 则的取值范围为.
-
2、已知集合 , 集合 , 若集合满足⫋ , 则这样的集合共有个.
-
3、已知定义在上的函数 , 若 , 都有 , 且的值域为 , 则以下结论正确的是( )A、 B、 C、为偶函数 D、的图象关于点中心对称
-
4、已知椭圆的左、右焦点分别是 , 左、右顶点分别是是椭圆上的一个动点(不与重合),则( )A、的离心率 B、的周长与点的位置无关 C、的取值范围为 D、直线与直线的斜率之积为
-
5、的展开式中( )A、前三项系数之和为112 B、二项式系数最大的项是第3项 C、常数项为240 D、所有项的系数之和为1
-
6、已知圆台的上、下底面圆的半径分别为2,5,侧面积为 , 则以该圆台外接球的球心为顶点,上、下底面圆为底面的两个圆锥的体积比为( )A、 B、 C、 D、
-
7、已知圆与轴相切于点,过点的直线交圆于另一点 , 点为坐标原点,若 , 则直线的方程为( )A、 B、 C、 D、
-
8、若函数在区间上有极值点,则实数的取值范围是( )A、 B、 C、 D、
-
9、正整数的倒数和,通常也称为调和数列的和.当很大时, , 其中称为欧拉-马歇罗尼常数,.若表示不超过的最大整数,则的值为( )(参考数据:)A、4 B、5 C、6 D、7
-
10、将函数的图象向左平移个单位长度,得到函数的图象,且的图象关于点对称,则的最小值为( )A、5 B、4 C、3 D、2
-
11、设函数在区间上单调递减,则实数的取值范围是( )A、 B、 C、 D、
-
12、已知向量 , 且 , 则( )A、8 B、 C、 D、2
-
13、已知复数满足 , 则( )A、 B、 C、1 D、
-
14、如图,在正四棱柱中, , , 点、、、分别在棱、、、上, , , .(1)、求证:;(2)、求三棱锥的体积;(3)、点在棱上,当二面角大小为时,求线段的长.
-
15、已知公差不为零的等差数列的前n项和为 , 若 , 且成等比数列
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足 , 若数列前n项和 , 证明.
-
16、抛物线的焦点F恰好是圆的圆心,过点F且倾斜角为的直线l与C交于不同的A,B两点,则 .
-
17、费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点为双曲线为焦点)上一点,点处的切线平分.已知双曲线:为坐标原点,点处的切线为直线 , 过左焦点作直线的垂线,垂足为 , 若 , 则双曲线的离心率为( )A、2 B、 C、 D、
-
18、如图l,在高为h的直三棱柱容器中, , , 现往该容器内灌进一些水,水深为 , 然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为(如图2),则=( )A、 B、 C、 D、
-
19、已知两个等差数列 , 的首项分别为1和2,且 , 则数列的前20项的和为( )A、165 B、630 C、60 D、330
-
20、已知向量 , , , 且 , 则实数为( )A、-4 B、-3 C、4 D、3