相关试卷
-
1、已知直线: , 直线: , 则“”是“”的( )条件.A、充分不必要 B、必要不充分 C、充要 D、既不充分也不必要
-
2、对于函数 , 若在定义域内存在实数 , 满足 , 则称为“局部反比例对称函数”.(1)、已知函数 , 试判断是不是“局部反比例对称函数”.并说明理由;(2)、用定义证明函数在为单调递增函数;(3)、若是定义在区间上的“局部反比例对称函数”,求实数的取值范围.
-
3、在中,角 , , 所对的边分别为 , , , 满足 .(1)、求角 .(2)、为边上一点,且 .
①若 , 求当取最小值时的值;
②若为角平分线,求的取值范围.
-
4、如图,在四棱锥中,底面是菱形, , 且 , 侧棱底面 , , 为中点.
(1)、证明:平面;(2)、求三棱锥的体积;(3)、求二面角的平面角的大小. -
5、已知函数的部分图像如图所示.
(1)、求函数的解析式,并求它的对称中心的坐标;(2)、将函数的图像向右平移个单位,得到函数的图像,为偶函数,求函数的单调递减区间. -
6、已知向量 , , .(1)、求;(2)、求与的夹角.
-
7、已知向量 , , 则在上的投影向量的坐标是.
-
8、如图,在正方体中,点P在线段上运动,则下列结论正确的是( )
A、直线平面 B、三棱锥的体积为定值 C、异面直线与所成角的取值范围是 D、当P为的中点时,直线与平面所成角的正弦值为 -
9、已知是定义在上的偶函数,且是奇函数,当时, , 则( )A、的值域为 B、的最小正周期为4 C、在上有3个零点 D、
-
10、下列选项中,值为的是( )A、 B、 C、 D、
-
11、在中,点在边上,且满足 , 点为线段上任意一点(除端点外),若实数 , 满足 , 则的最小值为( )A、 B、 C、 D、9
-
12、设函数是奇函数.若函数 , 则( )A、28 B、33 C、38 D、43
-
13、若 , 且 , 则的值为A、 B、 C、 D、
-
14、已知平面向量 , , 则“或”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件
-
15、已知是第二象限的角,为其终边上的一点,且 , 则( )A、-6 B、 C、 D、
-
16、复数的虚部为( )A、 B、1 C、 D、i
-
17、已知命题 , 则是( ).A、 B、 C、 D、
-
18、已知集合 , 则 ( )A、 B、 C、 D、
-
19、已知函数 .(1)、当时,判断函数的奇偶性,并说明理由;(2)、利用三角恒等变换,分别求函数在 , 4,6时的取值范围;(3)、请结合(2)的结果猜想函数的取值范围,然后证明你的猜想,并求方程有解时n的最小值.
-
20、下列函数在其定义域上既是奇函数又是增函数的是( )A、 B、 C、 D、