相关试卷

  • 1、若1+2i=i2z1 , 则z=(       )
    A、1i B、1+i C、2i D、2+i
  • 2、使式子log(2x1)(2x)有意义的x的取值范围是(     )
    A、2,+ B、(,2) C、(12,2 D、12,11,2
  • 3、已知函数fx=x2lnx
    (1)、求fx的图象在点e,fe处的切线方程;
    (2)、求函数fx的极值;
    (3)、证明:对任意的x0,+ , 有fxx1
  • 4、已知函数fx的图象如图所示,则fx可以为(     )

    A、fx=3x2x B、fx=x2x2x C、fx=x2x D、fx=x2x
  • 5、在平面直角坐标系中,若点Px0,y0满足x0,y0都是整数,则称点P为格点.
    (1)、指出椭圆x28+y22=1上的所有格点;
    (2)、设A,B是抛物线y=x2上的两个不同的格点,且线段AB的长度是正整数.求直线AB的斜率的所有可能值;
    (3)、设m(m3mN)项的数列an满足:点Qnan,an+1是函数y=b2x24的图象上的格点n=1,2,,m1.则是否存在正整数b , 使得数列an为常数列;若存在,请求出正整数b的取值范围;若不存在,请说明理由.
  • 6、已知椭圆x24+y2=1的左、右顶点分别为A,B , 动点Px1,y1,Qx2,y2均在椭圆上,O是坐标原点,记OPOQ的斜率分别为k1,k2OBPOAQ的面积分别为S1,S2.若k1k2=12 , 则S1S2的最大值为.
  • 7、已知函数fx=ln2x1x1+axaR.
    (1)、当a=1时,求曲线y=fx在点2,f2处的切线方程;
    (2)、若0<a13x32,2 , 证明:fx<2
    (3)、若x>1 , 恒有fx2ln2+32 , 求实数a的取值范围.
  • 8、在(12x)n(nN)的展开式中,x的系数为10 , 则n=.
  • 9、已知长方体ABCDA1B1C1D1E是棱C1D1的中点,平面AB1E将长方体分割成两部分,则体积较小部分与体积较大部分的体积之比为(       )
    A、715 B、12 C、724 D、717
  • 10、如图,侧面BCC1B1水平放置的正三棱台ABCA1B1C1,AB=2A1B1=4 , 侧棱长为2,P为棱A1B1上的动点.

    (1)、求证:AA1平面BCC1B1
    (2)、是否存在点P , 使得平面APC与平面A1B1C1的夹角的余弦值为53333?若存在,求出点P;若不存在,请说明理由.
  • 11、设集合Ai=1,2,3,,iiN+ , 对于集合Ai到集合Ai的函数f:AiAi , 记其中满足ffx=x的函数为“回函数”.对于任意给定的集合Ai , “回函数”的个数记为ai . 数列an的第i项为ai . 例如A1=1 , “回函数”仅有一个,即fx=1 , 满足ff1=f1=1 , 所以a1=1;A2=1,2 , “回函数”有两个,即f1x=1,x=12,x=2f2x=2,x=11,x=2 , 这两个函数都能满足ffx=x , 所以a2=2
    (1)、求a3
    (2)、当n2时,给出an+1,anan1之间的关系式并证明;
    (3)、证明:n2时,an2+nn1n23
  • 12、已知函数fx=xlnxa有两个零点x1,x2x1<x2
    (1)、求fx的单调区间和极值;
    (2)、当x0,1时,fxkx21a恒成立,求实数k的最小值;
    (3)、证明:x2x1<1+2aa2e24.
  • 13、四棱锥PABCD中,底面ABCD为正方形,AB=2,PBAD,PAB为锐角.

    (1)、求证:平面PAB平面ABCD
    (2)、若PD与平面ABCD所成角为π3,PB=26 , 求平面PAB与平面PCD夹角的余弦值.
  • 14、我们知道关于x,y的二元一次方程表示直线,但有的二元二次方程也能表示直线,比如x2y2=0表示的就是x+y=0xy=0两条直线.
    (1)、求方程xy+22x+y+1=0表示的直线与y轴围成的面积;
    (2)、若方程x2y2+ax+2y1=0表示的是两条直线,求a
  • 15、记ABC的内角A,B,C所对的边分别是a,b,c,ABC的面积为S . 若433S=a2b2+c2
    (1)、求B
    (2)、若sinA+sinC=1 , 求sinA+π6的值.
  • 16、在三棱锥PABC中,ABPC中点分别为M,N , 点GMN中点.若DPA上满足PD=23PAEPB上满足PE=34PB , 平面DEGPC于点F , 且PF=λPC , 则λ=
  • 17、Sn是等比数列an的前n项和,已知a3+S3=6,S3=3a3 , 则a2=
  • 18、若z1+i=1ii为虚数单位,则z=
  • 19、在锐角三角形ABC中,AC=1,A=π3,ABC外接圆的半径为R , 则(       )
    A、12<AB<2 B、0<AB<12 C、12<R<1 D、312<2BCAB<232
  • 20、已知an为等差数列,bn为等比数列,an的公差为d,bn的公比为qa1=b1>0 , 下列结论正确的是(       )
    A、d>0 , 则an为递增数列 B、q<0 , 则bn为递减数列 C、q>1>d>0 , 则anbn为递增数列 D、q>1>d>0 , 则bnan为递增数列
上一页 1043 1044 1045 1046 1047 下一页 跳转