• 1、成都石室中学举办校庆文艺展演晚会,设置有一个“传奇”主会场和“传承”,“扬辉”两个分会场.现场需要安排含甲、乙的六名安全员负责现场秩序安全,其中“传奇”主会场安排三人,剩下三人安排去“传承”,“扬辉”两个分会场(每个分会场至少安排一人).若要求甲、乙两人不在同一个会场开展工作,则不同的安排方案有种.
  • 2、请写出同时满足下面三个条件的一个函数解析式fx=.①f2x=fx;②fx至少有两个零点;③fx有最小值.
  • 3、数学中有许多形状优美的曲线,如图,曲线E:x2+(yx)2=1x轴交于A,B两点,与y轴交于C,D两点,PE上一个动点,则下列说法正确的有(       )

    A、AB<CD B、曲线E恰好经过3个整点(即横、纵坐标均为整数的点) C、PAB面积的最大值为1 D、满足PC+PD=23的点P有且只有2个
  • 4、泊松分布是一种离散型概率分布,常用于描述单位时间(或空间)内随机事件发生的次数,其概率分布列为PX=k=λkk!eλk=0,1,2, , 其中e为自然对数的底数,λ是泊松分布的均值.当二项分布的n很大n2000p很小p0.05时,泊松分布可作为二项分布的近似,且λ取二项分布的期望.假设每个大肠杆菌基因组含有10000个核苷酸对,采用0.05J/m2紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0005,设大肠杆菌的基因组产生的嘧啶二体个数为Y,PY=k表示经该种紫外线照射后产生k个嘧啶二体的概率.已知Y近似服从泊松分布,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,则下列说法正确的有(       )
    A、λ=5 B、PY2=15e5 C、大肠杆菌经该种紫外线照射后,存活的概率为e5 D、经该种紫外线照射后产生10个嘧啶二体的概率最大
  • 5、如图,长方体ABCDA1B1C1D1中,AA1=2,AB=AD=23,E是侧面AA1D1D的中心,F是底面ABCD的中心,点M在线段AD上运动,则下面选项正确的是(       )

    A、直线EFA1B平行 B、四面体MA1BC的体积为定值 C、E到平面A1BC的距离为32 D、异面直线EFA1C所成的角为π3
  • 6、直观想象是数学六大核心素养之一,现有大小完全相同的10个半径为r的小球,全部放进棱长为8+46的正四面体盒子中,则r的最大值为(       )
    A、12 B、1 C、32 D、2
  • 7、已知函数fx=2sin2x,xπ3+kπ,kZ,tanx,x=π3+kπ,kZ,若方程fx=30,m上恰有4个不同实根,则m的取值范围是(       )
    A、4π3,13π6 B、4π3,13π6 C、13π6,7π3 D、13π6,7π3
  • 8、在平面直角坐标系xOy中,已知圆C:(x1)2+(y2)2=r2r>0 , 点A4,0 , 若圆C上存在点M , 满足|MA|2+|MO|2=10 , 则r的取值范围是(       )
    A、0,5+1 B、51,5+1 C、0,51 D、5+1,+
  • 9、已知正项等差数列an满足a1+a3++a2n1a3+a5++a2n+1=nn+2nN* , 则a4050a2=(       )
    A、4050 B、2025 C、4048 D、2024
  • 10、已知z1=ziz0 , 则在复平面内z¯+zz所对应的点位于(       )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 11、x+1x6的展开式中系数最大的项为(       )
    A、第3项 B、第4项 C、第5项 D、第6项
  • 12、已知平面向量a=b=1ab=0 , 两个非零向量m=xa+b,n=3x2ab , 若mn , 则实数x的值为(       )
    A、1 B、13 C、1或13 D、113
  • 13、已知集合A=xx+10B=xx2+x2<0 , 则AB=(       )
    A、{xx<1} B、{x2<x<1} C、xx>2 D、{x2<x1}
  • 14、某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为27;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为12 , 若前一次抽中奖品,则这次抽中的概率为13 . 记该顾客第n次摸球抽中奖品的概率为Pn
    (1)、求P2的值,并探究数列Pn的通项公式;
    (2)、求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程.
  • 15、在实验室中,研究某种动物是否患有某种传染疾病,需要对其血液进行检验.现有nnN份血液样本,有以下两种检验方式:一是逐份检验,则需要检验n次;二是混合检验,将其中k(kNk2)份血液样本分别取样混合在一起检验,如果检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了;如果检验结果为阳性,为了明确这k份究竟哪些为阳性,就需要对它们再次取样逐份检验,那么这k份血液的检验次数共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的.且每份样本是阳性结果的概率为13
    (1)、假设有5份血液样本,其中只有2份血液样本为阳性,若采用逐份检验方式,求恰好经过3次检验就能把阳性样本全部检测出来的概率;
    (2)、假设有4份血液样本,现有以下两种方案:

    方案一:4个样本混合在一起检验;

    方案二:4个样本平均分为两组,分别混合在一起检验.

    若检验次数的期望值越小,则方案越优.

    现将该4份血液样本进行检验,试比较以上两个方案中哪个更优?

  • 16、在我校开展的文化节知识竞赛活动中,共有A、B、C三道必答题,答对A、B、C分别得10分,10分,20分,答错不得分.已知甲同学答对问题A、B、C的概率分别为452325 , 乙同学答对问题A、B、C的概率均为35 , 甲、乙两位同学都回答了这三道题,且各题回答正确与否相互独立.
    (1)、求甲同学至少有一道题不能答对的概率;
    (2)、运用你学过的统计学知识判断,谁的得分能力更强.
  • 17、已知2x+axn的展开式中,所有二项式系数的和为32.
    (1)、求n的值;
    (2)、若展开式中1x的系数为80,求a的值.
  • 18、从1,2,,12中随机抽取三个各不相同的数字,其样本方差s21的概率=.
  • 19、已知某次数学期末试卷中有8道4选1的单选题,学生小王能完整做对其中5道题,在剩下的3道题中,有2道题有思路,还有1道完全没有思路,有思路的题做对的概率为34 , 没有思路的题只好从4个选项中随机选一个答案.小王从这8题中任选1题,则他做对的概率为
  • 20、x2x5的展开式中,x3项的系数为.(用数字作答)
上一页 3 4 5 6 7 下一页 跳转