相关试卷
-
1、已知数列为等比数列,是函数的极值点,设等差数列的前项和为 , 若 , 则( )A、或 B、 C、 D、2
-
2、已知函数的图像如图所示,则其导函数的图像可能是( )
A、
B、
C、
D、
-
3、设为数列的前项和,若 , 则( )A、1012 B、2024 C、 D、
-
4、已知正项等比数列中, , 为的前n项和, , 则( )A、7 B、9 C、15 D、20
-
5、已知等差数列和的前项和分别为 , 若 , 则( )A、 B、 C、 D、
-
6、已知函数 , 则在处的导数为( )A、 B、 C、 D、
-
7、重庆是我国著名的“火炉”城市之一,如图,重庆某避暑山庄O为吸引游客,准备在门前两条小路OA和OB之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知 , 弓形花园的弦长 , 记弓形花园的顶点为 , 设.
(1)、将用含有的关系式表示出来;(2)、该山庄准备在点处修建喷泉,为获取更好的观景视野,如何设计的长度,才使得喷泉与山庄的距离的值最大? -
8、下列命题正确的是( )A、是关于的方程有一正一负根的充要条件 B、若关于的不等式对一切恒成立,则实数的取值范围是 C、若关于的不等式的解集是 , 则关于的不等式的解集是或 D、若 , 则的最小值为
-
9、已知正实数 , , 满足 , 则的取值范围为( )A、 B、 C、 D、
-
10、已知x,y均为正实数,且x+y=1,若的最小值为9,则正实数a的值为A、2 B、4 C、8 D、80
-
11、投掷一枚质地均匀的硬币三次,设随机变量 . 记A表示事件“”,表示事件“”,表示事件“”,则( )A、和互为对立事件 B、事件和不互斥 C、事件和相互独立 D、事件和相互独立
-
12、设 , 则“”是“”的( )A、充分而不必要条件 B、必要而不充分条件 C、充要条件 D、既不充分也不必要条件
-
13、已知角 , , , .(1)、求的值;(2)、求的值.
-
14、已知集合是由(为大于1的整数)个连续的正整数组成的集合.现将集合拆分成个子集 , 且集合满足:①两两没有公共元素;②元素的个数均为个,则称对集合进行了“个均分拆”.进一步,若集合又满足条件 , 则称对集合进行了“条件下个均分拆” .(1)、若集合 , 请写出对集合进行“2个均分拆”的所有拆法.(2)、若集合 , 试判断是否可以对集合进行“条件下2个均分拆”(条件为“ , 其中”),并说明理由.(3)、若集合 , 是否可以对集合进行“条件下16个均分拆”(条件为“集合中的最大数等于另外的两数之和”)?若能,求出整数的最大值,并给出一种拆法;若不能,说明理由.
-
15、已知函数(1)、若曲线在点处的切线在轴上的截距为 , 求的值;(2)、若函数存在唯一极值点,求的取值范围;(3)、若函数存在极大值,记作 , 求证:.
(参考结论:当时,.这里表示从0的右边逼近表示从0的左边逼近0.)
-
16、已知抛物线的焦点为.过焦点的直线交抛物线于两点.抛物线在点处的切线为直线 , 过点作平行于直线的直线交抛物线于点.设点.(1)、求证:成等差数列;(2)、求的面积的最小值.
-
17、如图,在等边三角形中,为边上一点, , 点 , 分别是边上的动点(不包括端点),若 , 且设
(1)、求证:不论为何值,恒成立.(2)、当和的面积相等时,求的值. -
18、如图,在四棱锥中,底面为菱形, , 且是边长为的等边三角形.
(1)、求证:;(2)、若 , 求直线与平面所成角的正弦值. -
19、在箱子里有六张印有6名同学名字(名字都不相同)的卡片,6名同学随机在箱子中抽取一张卡片.为了使6名同学都能拿到自己的卡片,每次只有2名同学可以互换手中的卡片,则这6名同学至少进行5次互换才能都拿到自己名字的卡片的概率为.
-
20、已知长方体的长,宽,高分别为 , 连接其各面的中心,得到一个八面体.已知该八面体的体积为8,则该长方体的表面积的最小值为.