相关试卷

  • 1、已知角α的终边与单位圆的交点为34,74 , 则sinπ+α=
  • 2、已知函数fx的定义域为R,fx>fx1+fx2 , 且当x<3时,fx=x , 则下列结论中一定正确的有(     )
    A、f1=1 B、f3>3 C、f9>90 D、f15>900
  • 3、使不等式2kx2+kx38<0对一切实数x都成立的一个充分条件是(     )
    A、k=0 B、k=1 C、k=1 D、3<k<0
  • 4、对于函数fx=sin2xgx=cos2xπ4 , 下列结论中正确的有(       )
    A、fxgx有相同的零点 B、fxgx有相同的最大值 C、fxgx有相同的最小正周期 D、fxgx的图象有相同的对称轴
  • 5、已知sinα+π6=33,απ3,5π6,cosα=(     )
    A、3+326 B、3326 C、366 D、3+66
  • 6、函数fx=lnx+3x5的零点所在的一个区间是(       )
    A、0,12 B、12,1 C、1,32 D、32,2
  • 7、已知幂函数y=fx的图象过点2,4 , 则不等式f3x1>f2x的解集为(     )
    A、,1 B、15,1 C、1,+ D、,151,+
  • 8、某工厂要建造一个长方体形无盖贮水池,其容积为4800m3 , 深为3m . 如果池底每平方米的造价为100元,池壁每平方米的造价为80元,那么贮水池的最低总造价是(     )

    A、160000元 B、179200元 C、198400元 D、297600元
  • 9、把函数y=sinx的图象上所有点的横坐标缩短到原来12的倍,纵坐标不变,再把所得曲线向左平移π4个单位长度,得到函数y=fx的图象,则fx=(     )
    A、sinx2+π4 B、sinx2+π8 C、sin2x+π4 D、cos2x
  • 10、命题xR,x2x+1>0的否定是(     )
    A、xR,x2x+1<0 B、xR,x2x+10 C、xR,x2x+1<0 D、xR,x2x+10
  • 11、设全集U=1,2,3,4,5 , 集合A=1,2,3,B=3,5 , 则UAB=(       )
    A、4 B、5 C、3,4,5 D、1,2,3,5
  • 12、“α0,π2”是“α是第一象限角”的(     )
    A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件
  • 13、已知关于x的不等式ax2+bx+c>0的解集为2,4 , 则不等式cx2bx+a<0的解集是(       )
    A、xx<12或x>14} B、x14<x<12 C、xx<14或x>12} D、x12<x<14
  • 14、已知函数f(x)=2sin2ωx+23sinωxcosωx1(ω>0)的相邻两对称轴间的距离为π
    (1)、求函数f(x)的解析式;
    (2)、将函数f(x)图象上点的横坐标伸长到原来的2倍,纵坐标不变,再向右平移2π3个单位长度得到函数g(x)的图象,若g2θ+π3=27θ0,π2 , 求sinθ的值.
  • 15、在ABC中,已知BC=3AC=4P在线段BC上,且BP=13BCAQ=23AB , 设CB=aCA=b.

    (1)、用向量ab表示AP
    (2)、若ACB=60° , 求APCQ.
  • 16、已知|a|=4,|b|=2 , 且ab夹角为120° , 求:
    (1)、|a+b|
    (2)、aa+b¯的夹角;
    (3)、若向量2aλbλa3b平行,求实数λ的值.
  • 17、已知αβ均为锐角,tanα=43cosα+β=1010
    (1)、求cos2α的值;
    (2)、求tanβ的值.
  • 18、将函数fx的图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向左平移π6个单位长度,得到函数gx的图象,若gx=Asinωx+φA>0,ω>0,φ<π2的部分图象如图所示,则ω=f7π12的值为.

  • 19、已知梯形ABCD中,AB//CD,AB=2CD , 三个顶点A(4,2),B(2,4),C(1,2).则顶点D的坐标.
  • 20、下列说法中正确的是(     )
    A、向是e1=(2,3),e2=12,34能作为平面内所有向量的一组基底 B、cos42°cos18°cos48°sin18°=12 C、两个非零向量a,b , 若|ab|=|a|+|b| , 则ab共线且反向 D、a=(1,2),b=(1,1) , 且aa+λb的夹角为锐角,则λ(5,+)
上一页 596 597 598 599 600 下一页 跳转