• 1、向量a,b的夹角为θ , 定义运算“”:ab=|a||b|sinθ , 若a=(3,1)b=(3,1) , 则ab的值为.
  • 2、在平行四边形OABC中,各顶点对应的复数分别为zO=0,zA=2+a2i,zB=-2a+3i,zC=-b+ai,则实数a-b为.
  • 3、不共面的三条定直线l1l2l3互相平行,点A在l1上,点B在l2上,C、D两点在l3上,若CD=a(定值),则三棱锥A-BCD的体积
    A、由A点的变化而变化 B、由B点的变化而变化 C、有最大值,无最小值 D、为定值
  • 4、三棱柱ABCA1B1C1中,BAC=90AB=AC=aAA1B1=AA1C1=60BB1C1=90 , 侧棱长为b , 则其侧面积为(       )
    A、33ab4 B、3+22ab C、3+2ab D、23+22ab
  • 5、复数z满足1+iz=1+i2 , 其中i为虚数单位,则在复平面上复数z对应的点位于(       )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 6、已知ABC的内角A,B,C的对边的长分别为a,b,c,且sinB=1 , 向量p=a,b,q=1,2 . 若pq , 则角C的大小为(       )
    A、π6 B、π3 C、π2 D、3
  • 7、若向量a,b,c满足:ab,c=1 , 且acbc=0 , 则|a+b|+|ab|的最小值为(       )
    A、52 B、2 C、1 D、12
  • 8、设n3 , 对于数列a1a2 , …,an , 若对任意k1,2,,n1a1+a2++akak+1+ak+2++an均为非负数或者均为负数,则称数列a1a2 , …,an为强数列.
    (1)、判断数列sin0sinπ2sinπsin3π2sin2π与数列cos0cosπ2cosπcos3π2cos2π分别是否为强数列;
    (2)、若存在公比为负数的等比数列a1a2 , …,a2025 , 使得它为强数列,求公比q的取值范围;
    (3)、设a1a2 , …,an为强数列,且数列中正数与负数交替出现(不出现0),证明:一定可以从数列a1a2 , …,an中选出连续三项,不改变它们在原数列中的顺序,它们三项构成一个强数列.
  • 9、已知函数fx=3x28sinx+φ , 其中φπ.
    (1)、若函数fx是偶函数,求φ
    (2)、当φ=0时,讨论函数fx0,+上的零点个数;
    (3)、若x0fx0 , 求φ的取值范围.
  • 10、如图,在四棱锥P-ABCD中,底面ABCD是梯形,ABCDAB=2CD=2AD=4BAD=60°PDCD , E为AB的中点,M为CE的中点.

    (1)、证明:PMAB
    (2)、若PA=15 , N为PC中点,且AN与平面PDM所成角的正弦值为156 , 求四棱锥PABCD的体积.
  • 11、已知抛物线C:y2=2px的焦点为F,抛物线C上点M2,y0满足MF=3.
    (1)、求抛物线C的方程;
    (2)、设点D1,0 , 过D作直线l交抛物线C于A,B两点,证明:x=1AFB的角平分线.
  • 12、在ΔABC中,角A,B,C的对边分别为a,b,c,若acosC+3sinC=b+c
    (1)、求A.
    (2)、若b=5c=2 , BC,AC边上的两条中线AM,BN相交于点P,

    (Ⅰ)求AM;

    (Ⅱ)求cosMPN.

  • 13、对7个相邻的格进行染色,每个格均可从红、绿、黄三种颜色中选一种,则没有相邻红格的概率为.

  • 14、在动画和游戏开发中,相切的曲线可生成平滑的角色路径和物体表面.若两条曲线在公共点处有相同的切线,且曲线不重合,则称两条曲线相切.设两抛物线y=x2+ay2=22x相切,则a=.
  • 15、双曲线x2a2y2b2=1a>0b>0)的左、右焦点为F1F2 , P为双曲线上一点,且满足PF1x轴,PF2F1=π6 , 则双曲线的离心率为.
  • 16、已知椭圆Γx29+y24=1 , 直线l:2x+3y+12=0.A1A2是椭圆的左、右顶点,F1F2是椭圆的左、右焦点,过直线l上任意一点P作椭圆Γ的切线PM,PN,切点分别为M,N,椭圆上任意一点Q(异于A1A2)处的切线分别交A1A2处的切线于点B1B2 , 则(     )
    A、直线MN过定点 B、F1F2B1B2四点共圆 C、MNl时,32,1是线段MN的三等分点 D、QB1QB2的最大值为9
  • 17、设函数fx=1cosπxx22x+3 , 则(     )
    A、曲线y=fx存在对称轴 B、曲线y=fx存在对称中心 C、fx22 D、2fx3x
  • 18、下列说法正确的是(       )
    A、数据8,6,4,11,3,7,9,10的上四分位数为9 B、0<PC<10<PD<1 , 且PD¯=1PDC , 则C,D相互独立 C、根据一组样本数据的散点图判断出两个变量线性相关,由最小二乘法求得其回归直线方程为y^=0.4x+a , 若其中一个散点坐标为a,5.4 , 则a=9 D、将两个具有相关关系的变量x,y的一组数据x1,y1x2,y2 , …,xn,yn调整为x1,y1+3x2,y2+3 , …,xn,yn+3 , 决定系数R2不变
    (附:b^=i=1nxix¯yiy¯i=1nxix¯2a^=y¯b^x¯R2=1i=1nyiy^i2i=1nyiy¯2
  • 19、现有一排方块,其中某些方块间有间隔.从中拿出一个方块或紧贴的两个方块,而不改变其余方块的位置,称为一次操作.如图所示,状态为3,2的方块:可以通过一次操作变成以下状态

       

    中的任何一种:3,132,21,21,1,2.游戏规定由甲开始,甲、乙轮流对方块进行操作,拿出最后方块的人获胜.对于以下开局状态,乙有策略可以保证自己获得游戏胜利的是(     )

    A、3,2,1 B、4,2 C、2,1,1 D、5,3
  • 20、已知函数fx=2axlnx,x>02x2+2a+3x+2,x0x12,+ , 有fxfx0恒成立,则a的取值范围是(     )
    A、12e,12 B、12e,23 C、12,23 D、23,1
上一页 10 11 12 13 14 下一页 跳转