相关试卷

  • 1、如图是正方体的平面展开图关于这个正方体,以下列正确的是(       )

    A、ED与NF所成的角为60° B、CN//平面AFB C、BM//DE D、平面BDE//平面NCF
  • 2、已知向量a=4,3,b=7,1 , 下列说法正确的是(       )
    A、a+ba B、与向量a平行的单位向量仅有45,35 C、ab=55 D、向量a在向量b上的投影向量为12b
  • 3、在棱长为1的正方体ABCDA1B1C1D1中,M,N分别为BD1B1C1的中点,点P在正方体的表面上运动,且满足MP//平面CND1 , 则下列说法正确的是(       )

    A、P可以是棱BB1的中点 B、线段MP的最大值为32 C、P的轨迹是正方形 D、P轨迹的长度为2+5
  • 4、如图,在ABC中,D为AB的中点,E为CD的中点,设AB=aAC=b , 以向量ab为基底,则向量AE=(       )

    A、12a+14b B、12a+b C、a+12b D、14a+12b
  • 5、已知a=2,b=1 , 且aba+2b互相垂直,则a,b的关系(       )
    A、共线 B、垂直 C、不垂直也不平行 D、都有可能
  • 6、已知复数z=1+2i1i(i为虚数单位),则复数z在复平面内对应的点在(       )
    A、第一象限 B、第二象限 C、第三象限 D、第四象限
  • 7、已知函数fx是定义在R上的奇函数,当x>0时,fx=x2x , 则fx=
  • 8、已知abc满足2a=3bln2=13c=2 , 则(       )
    A、a>b>c B、a>c>b C、b>c>a D、b>a>c
  • 9、若直线l1:mxy+1=0与直线l2:6x2yn=0平行,且l1l2间的距离为102 , 则mn=.
  • 10、已知集合A=xm+1x2m1B=x|182x18.
    (1)、求B
    (2)、若AB , 求实数m的取值范围.
  • 11、已知向量AB=2DCAB=(3,3)AD=(1,3) , 则四边形ABCD的面积为(       )
    A、332 B、33 C、32 D、322
  • 12、设abc分别为函数f(x)=xx1g(x)=xlgx1h(x)=xex1的零点,则abc的大小关系为(       ).
    A、a>b>c B、b>c>a C、c>a>b D、b>a>c
  • 13、已知四棱锥PABCD的体积为4,底面ABCD是边长为6的正方形,PB=3 , 则直线PB与平面ABCD所成角的正弦值为(     )
    A、33 B、23 C、53 D、63
  • 14、已知函数f(x)=exaxalnx(aR)
    (1)、求f(x)的单调区间;
    (2)、当ae时,判断f(x)的零点个数,并证明结论;
    (3)、不等式af(x)+a2lnx+1xlnxx+11e,+上恒成立,求实数a的取值范围.
  • 15、学校里的生物园地由矩形OABC与扇形OCD组成,OA=2mAB=23mCOD=π3 , 生物园地从O点出水喷洒灌溉,喷洒张角EOF=π3 , 阴影部分为可灌溉范围,点E在弧CD上,点F在线段AB上,设FOC=θ , 可灌溉范围的面积为S.

       

    (1)、求灌溉面积S关于θ的关系式,并求出θ的范围;
    (2)、求灌溉面积S取得最大值时sinθ的值.
  • 16、已知在(x12x3)n的展开式中,前3项系数的绝对值成等差数列,求:
    (1)、展开式中二项式系数最大项的项;
    (2)、展开式中系数最大的项;
    (3)、展开式中所有有理项.
  • 17、已知等差数列{an}的前n项和为Sn , 且S4=4S2a2n=2an+1nN*
    (1)、求数列{an}的通项公式;
    (2)、求数列{an}的前n项和Sn
    (3)、若bn=3n1 , 令cn=anbn , 求数列{cn}的前n项和Tn
  • 18、4位顾客将各自的帽子随意放在衣帽架上,然后,每人随意取走一顶帽子,则4人拿的都不是自己的帽子方案总数为.(用数字作答)
  • 19、有两个等差数列26101902814200 , 由这两个等差数列的公共项按从小到大的顺序组成一个新数列,这个新数列共有项,这个新数列的各项之和为
  • 20、已知a>b>0c>d>0alna+1=blnb+1=1.11lncc=1lndd=0.9 , 则(       )
    A、a+b<2 B、c+d>2 C、1d1c>ab D、ad>1
上一页 979 980 981 982 983 下一页 跳转