高考一轮复习:磁场

试卷更新日期:2025-08-24 类型:一轮复习

一、选择题

  • 1. 某“冰箱贴”背面的磁性材料磁感线如图所示,下列判断正确的是(    )

    A、a点的磁感应强度大于b点 B、b点的磁感应强度大于c点 C、c点的磁感应强度大于a点 D、a、b、c点的磁感应强度一样大
  • 2. 2024年9月27日,世界新能源汽车大会在海口开幕。大会中展现的诸多前沿科技,揭示了未来汽车发展的趋势。其中电动汽车的进步最为引人注目。图中与磁现象有关的四个实验,与电动机的原理最为相似的是(  )

    A、 B、 C、 D、
  • 3. 当导线中分别通以图示方向的电流,小磁针静止时N极垂直纸面向外的是(  )
    A、 B、 C、 D、
  • 4. 如图所示,交流发电机中的线圈ABCD沿逆时针方向匀速转动,产生的电动势随时间变化的规律为e=10sin(100πt)V。下列说法正确的是(  )

    A、该交流电的频率为100Hz B、线圈转到图示位置时,产生的电动势为0 C、线圈转到图示位置时,AB边受到的安培力方向向上 D、仅线圈转速加倍,电动势的最大值变为102V
  • 5. 安培通过实验研究,发现了电流之间相互作用力的规律。若两段长度分别为 △L1和 △L2、电流大小分别为I1和I2 的平行直导线间距为r 时,相互作用力的大小可以表示为F=kI1I2L1L2r2 。比例系数k 的单位是( )
     
    A、  kg •m/(s2•A) B、  kg •m/(s2 •A2) C、kg •m2/(s3 •A) D、kg •m2/(s3 •A3)
  • 6.  如图所示,空间中存在两根无限长直导线L1与L2 , 通有大小相等,方向相反的电流。导线周围存在M、O、N三点,M与O关于L1对称,O与N关于L2对称且OM=ON,初始时,M处的磁感应强度大小为B1 , O点磁感应强度大小为B2 , 现保持L1中电流不变,仅将L2撤去,求N点的磁感应强度大小(  )

    A、B212B1 B、B22B1 C、B2﹣B1 D、B1﹣B2
  • 7. 汽车装有加速度传感器,以测量汽车行驶时纵向加速度。加速度传感器有一个弹性梁,一端夹紧固定,另一端连接霍尔元件,如图所示。汽车静止时,霍尔元件处在上下正对的两个相同磁体中央位置,如果汽车有一向上的纵向加速度,则霍尔元件离开中央位置而向下偏移。偏移程度与加速度大小有关。如霍尔元件通入从左往右的电流,则下说法正确的是(  )

    A、若霍尔元件材料为N型半导体(载流子为电子),则前表面比后表面的电势高 B、若汽车加速度越大,则霍尔电压也越大 C、若汽车纵向加速度为0,增大电流,则监测到的霍尔电压也会增大 D、若汽车速度增大,则霍尔电压也增大
  • 8. 在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根通电长直导线,电流的方向垂直于纸面向里。如图所示,a,b,c,d是以直导线为圆心的同一圆周上的四点,在这四点中(  )

    A、a点磁感应强度的值最大 B、c点磁感应强度的值最大 C、c,d两点的磁感应强度大小相等 D、a,d两点的磁感应强度大小相等
  • 9. 如图所示,在磁感应强度大小为B的匀强磁场中,放置一通电圆线圈,圆心为O点,线圈平面与磁场垂直。在圆线圈的轴线上有M和N两点,它们到O点的距离相等。已知M点的总磁感应强度大小为零,则N点的总磁感应强度大小为(    )

    A、0 B、B C、2B D、3B
  • 10.  如图,两根相互平行的长直导线与一“凸”形导线框固定在同一竖直平面内,导线框的对称轴与两长直导线间的距离相等。已知左、右两长直导线中分别通有方向相反的恒定电流I1I2 , 且I1>I2 , 则当导线框中通有顺时针方向的电流时,导线框所受安培力的合力方向(  )

    A、竖直向上 B、竖直向下 C、水平向左 D、水平向右
  • 11. 如图所示,一光滑绝缘的圆柱体固定在水平面上。导体棒AB可绕过其中点的转轴在圆柱体的上表面内自由转动,导体棒CD固定在圆柱体的下底面。开始时,两棒相互垂直并静止,两棒中点O1O2连线与圆柱体的中轴线重合。现对两棒同时通入图示方向(A到B、C到D)的电流。下列说法正确的是(  )

       

    A、通电后,AB棒仍将保持静止 B、通电后,AB棒将逆时针转动(俯视) C、通电后,AB棒将顺时针转动(俯视) D、通电瞬间,线段O1O2上存在磁感应强度为零的位置
  • 12. 闭合金属框放置在磁场中,金属框平面始终与磁感线垂直。如图,磁感应强度B随时间:按正弦规律变化。为穿过金属框的磁通量,E为金属框中的感应电动势,下列说法正确的是

    A、t在0T4内,Φ和E均随时间增大 B、t=T83T8时,E大小相等,方向相同 C、t=T4时,Φ最大,E为零 D、t=T2时,Φ和E均为零
  • 13.  电磁俘能器可在汽车发动机振动时利用电磁感应 发电实现能量回收. 结构如图甲所示. 两对永磁铁 可随发动机一起上下振动. 每对永磁铁间有水平 方向的匀强磁场. 磁感应强度大小均为 B . 磁场 中,边长为 L 的正方形线圈竖直固定在减震装置 上. 某时刻磁场分布与线圈位置如图乙所示, 永磁 铁振动时磁场分界线不会离开线圈. 关于图乙中 的线圈. 下列说法正确的是 ( )

    A、穿过线圈的磁通量为 BL2 B、水磁铁相对线圈上升越高. 线圈中感应电动势 越大 C、永磁铁相对线圈上升越快, 线圈中感应电动势 越小 D、永磁铁相对线圈下降时, 线圈中感应电流的方 向为顺时针方向
  • 14. 如图为交变电流的两种引出方式,图甲采用两滑环引出电流,图乙则采用换向器实现电流的导出,两装置其它部分完全一样。发电机矩形线框匝数为N,面积为S,线框所在磁场可视为匀强磁场,磁感应强度为B,线框从图示位置开始以角速度ω绕轴转动,图中电阻阻值均为R,不计其它电阻。下列说法正确的是(  )

    A、图示位置电动势最大 B、甲图电流表读数是乙图电表的2倍 C、乙图中线框转动一圈,通过电流表的电流方向改变两次 D、两装置线圈转一圈,克服安培力做功均为πN2B2S2ωR
  • 15. 如图所示,两根相同的竖直悬挂的弹簧上端固定,下端连接一质量为40g的金属导体棒部分导体棒处于边界宽度为d=10cm的有界匀强磁场中,磁场方向垂直于纸面向里。导体棒通入4A的电流后静止时,弹簧伸长量是未通电时的1.5倍。若弹簧始终处于弹性限度内,导体棒一直保持水平,则磁感应强度B的大小为(取重力加速度g=10m/s2)(  )

    A、0.25T B、0.5T C、0.75T D、0.83T
  • 16.  磁电式电表原理示意图如图所示,两磁极装有极靴,极靴中间还有一个用软铁制成的圆柱。极靴与圆柱间的磁场都沿半径方向,两者之间有可转动的线圈。a、b、c和d为磁场中的四个点。下列说法正确的是(  )

    A、图示左侧通电导线受到安培力向下 B、a、b两点的磁感应强度相同 C、圆柱内的磁感应强度处处为零 D、c、d两点的磁感应强度大小相等
  • 17. 质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造如图所示。粒子源S产生的各种不同正粒子束(速度可视为零),粒子质量为m、带电量为q,粒子重力不计,经电压为U的加速电场加速后,从小孔N垂直于磁感线进入匀强磁场,运转半周后到达照相底片上的M点。则下列说法正确的是(  )

    A、粒子从小孔N垂直于磁感线进入匀强磁场的速度大小为qUm B、若粒子束q相同而m不同,则MN距离越大对应的粒子质量越小 C、进入匀强磁场中的粒子只要MN距离相同,则粒子的比荷一定相等 D、进入匀强磁场中的粒子只要MN距离相同,则粒子的电荷量一定相等
  • 18. 电磁流量计可以测量导电液体的流量Q——单位时间内流过管道横截面的液体体积。如图所示,内壁光滑的薄圆管由非磁性导电材料制成,空间有垂直管道轴线的匀强磁场,磁感应强度为B。液体充满管道并以速度v沿轴线方向流动,圆管壁上的MN两点连线为直径,且垂直于磁场方向,MN两点的电势差为U0。下列说法错误的是(  )

    A、N点电势比M点高 B、U0正比于流量Q C、在流量Q一定时,管道半径越小,U0越小 D、若直径MN与磁场方向不垂直,测得的流量Q偏小
  • 19. 一水平足够长绝缘传送带处于静止状态,其上方空间存在垂直纸面向外的匀强磁场,另有一带正电的物块静止于传送带左端,且与传送带间动摩擦因数为μ。从某时刻起,传送带开始以恒定加速度a(a>μg)启动,则物块的v—t图像大致为(  )

    A、 B、 C、 D、
  • 20. 如图甲为利用电磁驱动原理制作的交流感应电动机。三个线圈连接到三相电源上,电流形成的磁场可等效为以角速度ω0转动的辐向磁场。边长为l、总电阻为R的单匝正方形线框ABCD可绕其中心轴OO'旋转,图乙为这种驱动装置的俯视图,线框的两条边ABCD所处位置的磁感应强度大小均为B。当线框由静止开始转动时,ABCD两条边受到的阻力均为Ff=kv , 其中比例系数k=2B2l2RvABCD两条边的线速度大小。不计其他阻力。则当线框达到稳定转动时(  )

    A、线框的转动方向与辐向磁场的转动方向相反 B、线框的角速度大小为ω03 C、线框的感应电动势大小为Bl2ω02 D、线框AB边所受安培力大小为B2l3ω0R
  • 21. 回旋加速器的原理如图所示,由两个半径均为R的D形盒组成,D形盒狭缝间加周期性变化的交变电压,电压的值大小恒为U,D形盒所在平面有垂直于盒面向下的磁场,磁感应强度为B,一个质量为m、电荷量为q的粒子在加速器中被加速,则(       )

    A、D形盒上周期性变化的电压U越大,粒子离开D形盒时的速度越大 B、粒子每次经过D形盒之间的缝隙后速度增大qUm C、粒子以速度v在D形盒磁场内运动半个圆周后动能增加2qvBR D、粒子离开D形盒时动能为q2B2R22m
  • 22.  如图,在竖直平面内的Oxy直角坐标系中,x轴上方存在垂直纸面向里的匀强磁场,磁感应强度大小为B。在第二象限内,垂直纸面且平行于x轴放置足够长的探测薄板MN,MN到x轴的距离为d,上、下表面均能接收粒子。位于原点O的粒子源,沿Oxy平面向x轴上方各个方向均匀发射相同的带正电粒子。已知粒子所带电荷量为q、质量为m、速度大小均为qBdm。不计粒子的重力、空气阻力及粒子间的相互作用,则(  )

    A、粒子在磁场中做圆周运动的半径为2d B、薄板的上表面接收到粒子的区域长度为3d C、薄板的下表面接收到粒子的区域长度为d D、薄板接收到的粒子在磁场中运动的最短时间为πm6qB

二、多项选择题

  • 23. 如图所示是地磁场磁感线分布模型,小明同学受安培分子电流假说的启发,对地磁场形成原因进行了尝试性阐释:小强同学指出飞机飞行时,机翼两端将产生电势差并做出了尝试性阐释。关于地磁场及机翼感应电动势有关阐释,下列说法正确的有(  )

    A、地球带正电和地球自转形成了地磁场 B、地球带负电和地球自转形成了地磁场 C、飞机在北半球向西飞行时相对飞行员的右侧机翼电势高 D、飞机在南半球向西飞行时相对飞行员的右侧机翼电势高
  • 24.  手机拍照时手的抖动产生的微小加速度会影响拍照质量,光学防抖技术可以消除这种影响。如图,镜头仅通过左、下两侧的弹簧与手机框架相连,两个相同线圈c、d分别固定在镜头右、上两侧,c、d中的一部分处在相同的匀强磁场中,磁场方向垂直纸面向里。拍照时,手机可实时检测手机框架的微小加速度a的大小和方向,依此自动调节c、d中通入的电流IcId的大小和方向(无抖动时IcId均为零),使镜头处于零加速度状态。下列说法正确的是(  )

    A、Ic沿顺时针方向,Id=0 , 则表明a的方向向右 B、Id沿顺时针方向,Ic=0 , 则表明a的方向向下 C、若a的方向沿左偏上30° , 则Ic沿顺时针方向,Id沿逆时针方向且Ic>Id D、若a的方向沿右偏上30° , 则Ic沿顺时针方向,Id沿顺时针方向且Ic<Id
  • 25. 将半径为r的铜导线半圆环AB用两根不可伸长的绝缘线a、b悬挂于天花板上, AB置于垂直纸面向外的大小为B的磁场中,现给导线通以自A到B大小为I的电流,则(  )

    A、通电后两绳拉力变小 B、通电后两绳拉力变大 C、安培力为πBIr D、安培力为2BIr
  • 26.  磁流体发电机的原理如图所示,MN和PQ是两平行金属极板,匀强磁场垂直于纸面向里。等离子体(即高温下电离的气体,含有大量正、负带电粒子)从左侧以某一速度平行于极板喷入磁场,极板间便产生电压。下列说法正确的是(  )

    A、极板MN是发电机的正极 B、仅增大两极板间的距离,极板间的电压减小

    C、仅增大等离子体的喷入速率,极板间的电压增大 D、仅增大喷入等离子体的正、负带电粒子数密度,极板间的电压增大
  • 27. 如图,关于x轴对称的光滑导轨固定在水平面内,导轨形状为抛物线,顶点位于O点。一足够长的金属杆初始位置与y轴重合,金属杆的质量为m,单位长度的电阻为r0。整个空间存在竖直向上的匀强磁场,磁感应强度为B。现给金属杆一沿x轴正方向的初速度v0 , 金属杆运动过程中始终与y轴平行,且与电阻不计的导轨接触良好。下列说法正确的是(  )

    A、金属杆沿x轴正方向运动过程中,金属杆中电流沿y轴负方向 B、金属杆可以在沿x轴正方向的恒力作用下做匀速直线运动 C、金属杆停止运动时,与导轨围成的面积为mv0r0B2 D、若金属杆的初速度减半,则金属杆停止运动时经过的距离小于原来的一半
  • 28.  如图,带等量正电荷q的M、N两种粒子,以几乎为0的初速度从S飘入电势差为U的加速电场,经加速后从O点沿水平方向进入速度选择器(简称选择器)。选择器中有竖直向上的匀强电场和垂直纸面向外的匀强磁场。当选择器的电场强度大小为E,磁感应强度大小为B1 , 右端开口宽度为2d时,M粒子沿轴线OO'穿过选择器后,沿水平方向进入磁感应强度大小为B2、方向垂直纸面向外的匀强磁场(偏转磁场),并最终打在探测器上;N粒子以与水平方向夹角为θ的速度从开口的下边缘进入偏转磁场,并与M粒子打在同一位置,忽略粒子重力和粒子间的相互作用及边界效应,则(  )

    A、M粒子质量为2qUB12E2 B、刚进入选择器时,N粒子的速度小于M粒子的速度 C、调节选择器,使N粒子沿轴线OO'穿过选择器,此时选择器的电场强度与磁感应强度大小之比为4EUcosθ4UB1EdB2 D、调节选择器,使N粒子沿轴线OO'进入偏转磁场,打在探测器上的位置与调节前M粒子打在探测器上的位置间距为4UB1EB2+(EdB24UB1)UEB2UEdcosθ
  • 29. 如图所示,一根固定的足够长的光滑绝缘细杆与水平面成θ角。质量为m、电荷量为+q的带电小球套在细杆上。小球始终处于磁感应强度大小为B的匀强磁场中。磁场方向垂直细杆所在的竖直面,不计空气阻力。小球以初速度v0沿细杆向上运动至最高点,则该过程( )

    A、合力冲量大小为mv0cosθ B、重力冲量大小为 mv0sinθ C、洛伦兹力冲量大小为qBv022gsinθ D、若v0=2mgcosθqB , 弹力冲量为零

三、非选择题

  • 30. 如图所示,电源电动势E=2.4 V,内阻r=0.4 Ω,电阻R2=0.2 Ω,CD、EF为竖直平面内两条平行导轨,处在与导轨平面垂直的水平匀强磁场中,其电阻忽略不计,ab为金属棒,质量m=5 g,在导轨间的长度l=25 cm,电阻R1=0.2 Ω,ab可在光滑导轨上自由滑动且与导轨接触良好,滑动时保持水平,g取10 m/s2 , 求:

    (1)S断开ab保持静止时,B的大小;

    (2)S接通瞬间,金属棒的加速度。

  • 31. 如图所示,平行板电容器两板间加有恒定电压,在平行板电容器右侧有内径为r=1m、外径为内径的2倍的圆环状匀强磁场,磁场的磁感应强度大小为B=2T . 在M板附近有一个粒子源,不断放出初速度大小不计、比荷为1×104C/kg的带正电荷的粒子,粒子经电场加速后,沿圆环直径方向射入环形磁场,粒子恰好不进入小圆形区域,粒子的重力不计,sin53°=0.8cos53°=0.6

    (1)、求粒子在磁场中运动的速度大小.
    (2)、若要求MN两板间电场强度不能大于3×104N/C , 则两板间的距离至少为多少?
    (3)、求粒子在磁场中运动的时间(保留三位有效数字).
  • 32. 如图(a),固定在光滑绝缘水平面上的单匝正方形导体框abcd , 置于始终竖直向下的匀强磁场中,ad边与磁场边界平行,ab边中点位于磁场边界。导体框的质量m=1kg , 电阻R=0.5Ω、边长L=1m。磁感应强度B随时间t连续变化,01sBt图像如图(b)所示。导体框中的感应电流I与时间t关系图像如图(c)所示,其中01s内的图像未画出,规定顺时针方向为电流正方向。

    (1)、求t=0.5sad边受到的安培力大小F;
    (2)、画出图(b)中1~2sBt图像(无需写出计算过程);
    (3)、从t=2s开始,磁场不再随时间变化。之后导体框解除固定,给导体框一个向右的初速度v0=0.1m/s , 求ad边离开磁场时的速度大小v1
  • 33.  如图所示,光滑水平面上有一个长为L、宽为d的长方体空绝缘箱,其四周紧固一电阻为R的水平矩形导线框,箱子与导线框的总质量为M。与箱子右侧壁平行的磁场边界平面如截面图中虚线PQ所示,边界右侧存在范围足够大的匀强磁场,其磁感应强度大小为B、方向竖直向下。t=0时刻,箱子在水平向右的恒力F(大小未知)作用下由静止开始做匀加速直线运动,这时箱子左侧壁上距离箱底h处、质量为m的木块(视为质点)恰好能与箱子保持相对静止。箱子右侧壁进入磁场瞬间,木块与箱子分离;箱子完全进入磁场前某时刻,木块落到箱子底部,且箱子与木块均不反弹(木块下落过程中与箱子侧壁无碰撞);木块落到箱子底部时即撤去F。运动过程中,箱子右侧壁始终与磁场边界平行,忽略箱壁厚度、箱子形变、导线粗细及空气阻力。木块与箱子内壁间的动摩擦因数为μ , 假设最大静摩擦力等于滑动摩擦力,重力加速度为g

    (1)、求F的大小;
    (2)、求t=0时刻,箱子右侧壁距磁场边界的最小距离;
    (3)、若t=0时刻,箱子右侧壁距磁场边界的距离为ss大于(2)问中最小距离),求最终木块与箱子的速度大小。
  • 34. 特雷门琴是世界第一件电子乐器。特雷门琴生产於1919年,由前苏联物理学家利夫·特尔门(Lev Termen)教授发明,艺名雷奥·特雷门(Leon Theremin)。同年已经由一位女演奏家作出公开演奏,尤甚者连爱因斯坦都曾参观,依然是世上唯一不需要身体接触的电子乐器。
    (1)、人手与竖直天线构成可视为如下图所示的等效电容器,与自感线圈L构成LC振荡电路。

    (1)当人手靠近天线时,电容变大(选填“变大”、“不变”、“变小”)。

    (2)(多选)在电容器电荷量为零的瞬间,达到最大值。

    A.电场能       B.电流       C.磁场能       D.电压

    (2)、特雷门琴的扬声器结构如图所示,图a为正面切面图,磁铁外圈为S极,中心横柱为N极,横柱上套着线圈,其侧面图如图b所示。

    (1)此时线圈的受力方向为

    A.左       B.右       C.径向向外       D.径向向内

    (2)若单匝线圈周长为2.0cm , 磁场强度B=0.5TI=I0sin2πftI0=0.71Af=100Hz , 则I的有效值为A;单匝线圈收到的安培力的最大值为

    (3)已知当温度为25℃时,声速v=347.6m/s , 求琴的A5440Hz的波长为

    (3)、有一平行板电容器,按如下图接入电路中。

    (1)减小两平行板间距d时,电容会变大(选填“变大”、“变小”、“不变”)。

    (2)已知电源电压为U,电容器电容为C,闭合开关,稳定时,电容器的电荷量为

    (4)、有一质量为m,电荷量为q的正电荷从电容器左侧中央以速度v0水平射入,恰好从下极板最右边射出,板间距为d,两极板电压为U,求两极板的长度L(电荷的重力不计)。
    (5)、已知人手靠近竖直天线时,音调变高,靠近水平天线时,声音变小;那么若想声波由图像①变成图像②,则人手(  )

    A、靠近竖直天线,远离水平天线 B、靠近竖直天线,靠近水平天线 C、远离竖直天线,远离水平天线 D、远离竖直天线,靠近水平天线
  • 35. 电子比荷是描述电子性质的重要物理量。在标准理想二极管中利用磁控法可测得比荷,一般其电极结构为圆筒面与中心轴线构成的圆柱体系统,结构简化如图(a)所示,圆筒足够长。在O点有一电子源,向空间中各个方向发射速度大小为v0的电子,某时刻起筒内加大小可调节且方向沿中心轴向下的匀强磁场,筒的横截面及轴截面示意图如图(b)所示,当磁感应强度大小调至B0时,恰好没有电子落到筒壁上,不计电子间相互作用及其重力的影响。求:(R、v0B0均为已知量)

    (1)、电子的比荷em
    (2)、当磁感应强度大小调至12B0时,筒壁上落有电子的区域面积S。
  • 36. 如图所示,两平行虚线MN、PQ间无磁场。MN左侧区域和PQ右侧区域内均有垂直于纸面向外的匀强磁场,磁感应强度大小分别为B和2B。一质量为m、电荷量为q的带正电粒子从MN左侧O点以大小为v0的初速度射出,方向平行于MN向上。已知O点到MN的距离为3mv02qB , 粒子能回到O点,并在纸面内做周期性运动。不计重力,求

    (1)、粒子在MN左侧区域中运动轨迹的半径;
    (2)、粒子第一次和第二次经过PQ时位置的间距x:
    (3)、粒子的运动周期T.
  • 37. 探究性学习小组设计了一个能在喷镀板的上下表面喷镀不同离子的实验装置,截面如图所示。在xOy平面内,除x轴和虚线之间的区域外,存在磁感应强度大小为B,方向垂直纸面向外的匀强磁场,在无磁场区域内,沿着x轴依次放置离子源、长度为L的喷镀板P、长度均为L的栅极板M和N(由金属细丝组成的网状电极),喷镀板P上表面中点Q的坐标为(1.5L,0),栅极板M中点S的坐标为(3L,0),离子源产生a和b两种正离子,其中a离子质量为m,电荷量为q,b离子的比荷为a离子的14倍,经电压U=kU0(其中U0=B2qL28m , k大小可调,a和b离子初速度视为0)的电场加速后,沿着y轴射入上方磁场。经磁场偏转和栅极板N和M间电压UNM调控(UNM>0),a和b离子分别落在喷镀板的上下表面,并立即被吸收且电中和,忽略场的边界效应、离子受到的重力及离子间相互作用力。

    (1)、若U=U0 , 求α离子经磁场偏转后,到达x轴上的位置x0(用L表示)。
    (2)、调节U和UNM , 并保持UNM=34U , 使a离子能落到喷镀板P上表面任意位置,求:

    ①U的调节范围(用U0表示);

    ②b离子落在喷镀板P下表面的区域长度;

    (3)、要求a和b离子恰好分别落在喷镀板P上下表面的中点,求U和UNM的大小。
  • 38. 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.

    稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e , 初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.

    已知电子的质量为m、电荷量为e;对于氙离子,仅考虑电场的作用.

    (1)、求氙离子在放电室内运动的加速度大小a;
    (2)、求径向磁场的磁感应强度大小B2
    (3)、设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.