高考一轮复习:牛顿运动定律
试卷更新日期:2025-08-24 类型:一轮复习
一、选择题
-
1. 孔明灯又叫天灯,相传是由三国时的诸葛孔明(即诸葛亮)发明的,如图所示,当年,诸葛孔明被司马懿围困于平阳,无法派兵出城求救,孔明算准风向,制成会飘浮的纸灯笼,系上求救的讯息,其后果然脱险,于是后世就称这种灯笼为孔明灯。现有一质量为的孔明灯升空后向着东北偏上方向匀速上升,则此时孔明灯所受空气的作用力大小和方向是( )A、0 B、 , 东北偏上方向 C、 , 竖直向上 D、 , 东北偏上方向2. 在足球运动中,足球入网如图所示,则( )A、踢香蕉球时足球可视为质点 B、足球在飞行和触网时惯性不变 C、足球在飞行时受到脚的作用力和重力 D、触网时足球对网的力大于网对足球的力3. 3月15日,2025年女子冰壶世锦赛开赛,中国女子冰壶队在首场比赛中5∶3战胜土耳其队,取得了本届世锦赛“开门红”。比赛中运动员所用冰壶的惯性大小取决于( )A、冰壶的速度 B、冰壶的体积 C、冰壶受到的阻力 D、冰壶的质量4. 2024年7月四川籍运动员邓雅文在奥运会赛场上获得自由式小轮车比赛冠军,比赛场景及简化图如图所示。某段比赛中运动员骑着小轮车仅靠惯性向下经历一段竖直平面内的曲面轨道直到水平地面,已知曲面轨道与水平地面平滑连接,空气阻力不可忽略。则在该过程中运动员( )A、一直处于失重状态 B、机械能一定减小 C、惯性越来越大 D、重力的功率一直增大5. 科学的思维和研究方法对物理学的发展意义深远,对揭示物理现象的本质十分重要。下列哪项研究是运用理想实验法得到的( )A、牛顿发现万有引力定律 B、伽利略发现力不是维持物体运动的原因 C、开普勒提出行星的运动规律 D、卡文迪许用扭秤实验测量计算出万有引力常量6. 中国运动员以121公斤的成绩获得2024年世界举重锦标赛抓举金牌,举起杠铃稳定时的状态如图所示。重力加速度 , 下列说法正确的是( )A、双臂夹角越大受力越小 B、杠铃对每只手臂作用力大小为 C、杠铃对手臂的压力和手臂对杠铃的支持力是一对平衡力 D、在加速举起杠铃过程中,地面对人的支持力大于人与杠铃总重力7. 载人飞船的火箭成功发射升空,载人飞船进入预定轨道后,与空间站完成自主快速交会对接,然后绕地球做匀速圆周运动。已知空间站轨道高度低于地球同步卫星轨道,则下面说法正确的是( )A、火箭加速升空失重 B、宇航员在空间站受到的万有引力小于在地表受到万有引力 C、空间站绕地球做匀速圆周运动的角速度小于地球自转角速度 D、空间站绕地球做匀速圆周运动的加速度小于地球同步卫星的加速度8. 如图所示,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种斥力可以使磁体悬浮在空中,超导磁浮列车就是运用了这个原理。关于这种磁浮现象,下列说法中正确的是( )A、超导体使磁体处于失重状态 B、超导体对磁体的磁力与磁体受到的重力相平衡 C、超导体中电流产生的磁场方向与磁体的磁场方向相同 D、磁体靠近时,超导体中有电流,磁体悬浮时,超导体中无电流9. 下列说法正确的是( )A、链球做匀速圆周运动过程中加速度不变 B、足球下落过程中惯性不随速度增大而增大 C、乒乓球被击打过程中受到的作用力大小不变 D、篮球飞行过程中受到空气阻力的方向与速度方向无关10. 下列对教材中的四副插图所包含物理思想方法的说法错误的是( )A、图甲:类比法; B、图乙:理想实验方法; C、图丙:等效法; D、图丁:控制变量法11. 质量为m的列车匀速v行驶,突然以F大小的力制动刹车直到列车停止,过程中恒受到f的空气阻力,下列说法正确的是( )A、减速运动加速度大小 B、力F的冲量为mv C、刹车距离为 D、匀速行驶时功率为12. 一个宽为L的双轨推拉门由两扇宽为的门板组成。门处于关闭状态,其俯视图如图(a)所示。某同学用与门板平行的水平恒定拉力作用在一门板上,一段时间后撤去拉力,该门板完全运动到另一边,且恰好不与门框发生碰撞,其俯视图如图(b)所示。门板在运动过程中受到的阻力与其重力大小之比为μ,重力加速度大小为g。若要门板的整个运动过程用时尽量短,则所用时间趋近于( )A、 B、 C、 D、13. 如图,装有轻质光滑定滑轮的长方体木箱静置在水平地面上,木箱上的物块甲通过不可伸长的水平轻绳绕过定滑轮与物块乙相连。乙拉着甲从静止开始运动,木箱始终保持静止。已知甲、乙质量均为 , 甲与木箱之间的动摩擦因数为0.5,不计空气阻力,重力加速度g取 , 则在乙下落的过程中( )A、甲对木箱的摩擦力方向向左 B、地面对木箱的支持力逐渐增大 C、甲运动的加速度大小为 D、乙受到绳子的拉力大小为14. 从足够高处由静止释放的小球,在竖直下落过程中所受的阻力与其速度的大小成正比。取竖直向下为正方向,则下列关于小球下落过程中的加速度 a、下落高度h、速度v随着时间t变化的图像,以及速度的平方与下落高度h的关系图像,正确的是( )A、
B、
C、
D、
15. 我国运动员王铮在今年举办的东京奥运会女子链球决赛中成功拿下一枚银牌,这是中国女子链球首次在奥运会上夺银。如图甲所示为王铮比赛瞬间的照片,若运动员在开始甩动链球时,可认为链球在水平面内做匀速圆周运动,如图乙所示,不计空气阻力,对此下列说法正确的是( )A、链球球体受到重力、拉力及向心力共三个力的作用 B、链条与竖直方向的夹角θ越大,链条对球体施加的力越小,运动员越省力 C、链条与竖直方向的夹角θ越大,链球球体的周期越大 D、若运动员此时松手,链球将沿松手时的速度方向做平抛运动16. 在微观世界,粒子的位置和动量不能同时精准确定,即有。除了动量与位置外还有其他物理量的不确定关系。如某物理量A,也有 , 其中t代表时间,h为普朗克常量,则物理量A的单位是( )A、N B、W C、K D、J17. 2024年6月27日,吉利汽车发布的最新一代“刀片式”磷酸铁锂电池——神盾短刀电池。质量能量密度提升至 , 体积利用率提升50%,适配性更广泛。下列用国际单位制来表示质量能量密度的单位,正确的是( )A、 B、 C、 D、18. 如图所示,工人利用滑轮组将重物缓慢提起,下列说法正确的是( )A、工人受到的重力和支持力是一对平衡力 B、工人对绳的拉力和绳对工人的拉力是一对作用力与反作用力 C、重物缓慢拉起过程,绳子拉力变小 D、重物缓慢拉起过程,绳子拉力不变19. 如图所示,在水平地面上,一位同学单手倒立斜靠在一大木箱上(木箱侧面光滑),已知同学的质量小于木箱质量,同学和木箱均保持静止状态,则下列说法正确的是( )A、同学受到地面的摩擦力小于木箱受到地面的摩擦力 B、同学受到地面的摩擦力与木箱受到地面的摩擦力是一对平衡力 C、同学受到木箱向右的弹力与地面对人向左的摩擦力是作用力与反作用力 D、同学受到的重力的平衡力是地面对他向上的弹性力20. 模拟失重环境的实验舱,通过电磁弹射从地面由静止开始加速后竖直向上射出,上升到最高点后回落,再通过电磁制动使其停在地面。实验舱运动过程中,受到的空气阻力f的大小随速率增大而增大,f随时间t的变化如图所示(向上为正)。下列说法正确的是( )A、从到 , 实验舱处于电磁弹射过程 B、从到 , 实验舱加速度大小减小 C、从到 , 实验舱内物体处于失重状态 D、时刻,实验舱达到最高点21. 如图,是游乐场的翻滚过山车装置。过山车沿直径为20m的圆环轨道做匀速圆周运动,向心加速度大小为4g(重力加速度g=10m/s2)。则下列错误的是( )A、过山车的线速度大小约为20m/s B、过山车通过最低点时,乘客处于超重状态 C、过山车通过最高点时,乘客处于失重状态 D、过山车通过最高点时,乘客处于超重状态22. 倾角为θ的传送带以恒定速率v0顺时针转动。t =0时在传送带底端无初速轻放一小物块,如图所示。t0时刻物块运动到传送带中间某位置,速度达到v0。不计空气阻力,则物块从传送带底端运动到顶端的过程中,加速度 a、速度 v随时间 t变化的关系图线可能正确的是( )A、B、
C、
D、
23. 如图甲所示,滑块、中间用一根轻质弹簧相连,静止于光滑水平面上,初始时弹簧处于原长。现对物块施加水平向右,大小为的恒力 , 内两物块的加速度随时间变化的情况如图乙所示。整个过程中弹簧均未超出弹性限度,下列说法正确的是( )A、滑块的质量之比为 B、若已知末的速度为 , 则末的速度为 C、由图可知,后、两物体的加速度将保持不变 D、后的加速度将继续增大,的加速度将减小,最终两物体的加速度会相同,做匀变速直线运动二、多项选择题
-
24. 质点由静止开始做直线运动,所受合外力大小随时间变化的图象如图所示,则有关该质点的运动,以下说法中正确的是( )A、质点在0-2s内做匀加速运动 B、质点在0-2s内速度不变 C、质点在2-4s内加速度越来越小 D、质点在2-4s内速度越来越大25. 如图所示,质量分别为和的、按如图的方式用轻弹簧和轻绳连接,当系统静止时轻绳的拉力大小为 , 轻弹簧的伸长量为 , 重力加速度用表示,则下列说法正确的是( )A、剪断轻绳的瞬间,的瞬时加速度大小为 B、剪断轻绳后,向下运动瞬时加速度大小为零 C、撤走长木板的瞬间,的瞬时加速度大小为 D、撤走长木板后,向下运动瞬时加速度大小为26. 若长度、质量、时间和动量分别用a、b、c和d表示,则下列各式可能表示能量的是( )A、 B、 C、 D、27. 一滑块在水平地面上沿直线滑行,时速率为1m/s。从此刻开始在与速度平行的方向上施加一水平作用力F,力F和滑块的速度v随时间的变化规律分别如图甲和乙所示,两图中取同一正方向。则下列判断正确的是( )A、滑块的质量为1kg B、滑块与水平地面间的滑动摩擦力大小为1N C、第1s内合外力对滑块做功为 D、第2s内力F的平均功率为3W
三、非选择题
-
28. 物流公司通过滑轨把货物直接装运到卡车中,如图所示,倾斜滑轨与水平面成24°角,长度l1=4m,水平滑轨长度可调,两滑轨间平滑连接。若货物从倾斜滑轨顶端由静止开始下滑,其与滑轨间的动摩擦因数均为 ,货物可视为质点(取cos24°=0.9,sin24°=0.4)。(1)、求货物在倾斜滑轨上滑行时加速度a1的大小;(2)、求货物在倾斜滑轨末端时速度v的大小;(3)、若货物滑离水平滑轨末端时的速度不超过2m/s,求水平滑轨的最短长度l2。29. 某小组采用如图甲所示的装置验证牛顿第二定律,部分实验步骤如下:(1)、将两光电门安装在长直轨道上,选择宽度为d的遮光片固定在小车上,调整轨道倾角,用跨过定滑轮的细线将小车与托盘及码相连。选用d=cm(填“5.00"或“1.00”)的遮光片,可以较准确地测量遮光片运动到光电门时小车的瞬时速度。(2)、将小车自轨道右端由静止释放,从数字毫秒计分别读取遮光片经过光电门1、光电门2时的速度v1=0.40m/s、v2=0.81m/s,以及从遮光片开始遮住光电门1到开始遮住光电门2的时间t=1.00s,计算小车的加速度a=m/s2(结果保留2位有效数字)。(3)、将托盘及码的重力视为小车受到的合力F,改变码质量,重复上述步骤,根据数据拟合出a-F图像,如图乙所示。若要得到一条过原点的直线,实验中应(填“增大”或“减小”)轨道的倾角。(4)、图乙中直线斜率的单位为(填“kg”或“kg-1”)。30. 如图所示,竖直平面内有一光滑圆弧管道,其半径为R=0.5m,一质量m=0.8kg的小球从平台边缘的A处水平射出,恰能沿圆弧管道上P点的切线方向进入管道内侧,管道半径OP与竖直线的夹角为53°,已知管道最高点Q与A点等高,sin53°=0.8,cos53°=0.6,g取10 m/s2。试求:
(1)小球从平台上的A点射出时的速度大小v0;
(2)小球从平台上的射出点A到圆弧管道入射点P之间的距离l(结果可用根式表示);
(3)如果小球沿管道通过圆弧的最高点Q时的速度大小为3m/s,则小球运动到Q点时对轨道的压力。
31. 某游乐项目装置简化如图,A为固定在地面上的光滑圆弧形滑梯,半径 , 滑梯顶点a与滑梯末端b的高度 , 静止在光滑水平面上的滑板B,紧靠滑梯的末端,并与其水平相切,滑板质量 , 一质量为的游客,从a点由静止开始下滑,在b点滑上滑板,当滑板右端运动到与其上表面等高平台的边缘时,游客恰好滑上平台,并在平台上滑行停下。游客视为质点,其与滑板及平台表面之间的动摩擦系数均为 , 忽略空气阻力,重力加速度 , 求:(1)、游客滑到b点时对滑梯的压力的大小;(2)、滑板的长度L32. 如图所示,水平地面上放一个质量M=1kg的木板,一个质量m=1kg、带电量q=+1×10-5C的小物块(可视为质点)放在木板最左端,物块与木板间的动摩擦因数=0.4,木板与水平地面间的动摩擦因数=0.2。在物块右侧距物块L1=4.5m的区域有一匀强电场E,电场区域宽度为L2=12m,电场强度大小E=1×106N/C,方向竖直向上。现对木板施加一水平向右恒力F,使物块进入电场区域前恰好和木板保持相对静止地向右加速运动,物块刚进入电场时撤去恒力F。已知最大静摩擦力等于滑动摩擦力,物块带电量始终不变,重力加速度g取10m/s2 , 求:(1)水平恒力F的大小?
(2)物块离开电场时,木板的速度大小?
(3)要使物块不从木板滑下,木板的长度L至少为多少?
33. 如图,木板A放置在光滑水平桌面上,通过两根相同的水平轻弹簧M、N与桌面上的两个固定挡板相连。小物块B放在A的最左端,通过一条跨过轻质定滑轮的轻绳与带正电的小球C相连,轻绳绝缘且不可伸长,B与滑轮间的绳子与桌面平行。桌面右侧存在一竖直向上的匀强电场,A、B、C均静止,M、N处于原长状态,轻绳处于自然伸直状态。时撤去电场,C向下加速运动,下降后开始匀速运动,C开始做匀速运动瞬间弹簧N的弹性势能为。已知A、B、C的质量分别为、、 , 小球C的带电量为 , 重力加速度大小取 , 最大静摩擦力等于滑动摩擦力,弹簧始终处在弹性限度内,轻绳与滑轮间的摩擦力不计。(1)、求匀强电场的场强大小;(2)、求A与B间的滑动摩擦因数及C做匀速运动时的速度大小;(3)、若时电场方向改为竖直向下,当B与A即将发生相对滑动瞬间撤去电场,A、B继续向右运动,一段时间后,A从右向左运动。求A第一次从右向左运动过程中最大速度的大小。(整个过程B未与A脱离,C未与地面相碰)34. 一弹射游戏装置竖直截面如图所示,固定的光滑水平直轨道AB、半径为R的光滑螺旋圆形轨道BCD、光滑水平直轨道DE平滑连接。长为L、质量为M的平板紧靠长为d的固定凹槽EFGH侧璧EF放置,平板上表面与DEH齐平。将一质量为m的小滑块从A端弹射,经过轨道BCD后滑上平板并带动平板一起运动,平板到达HG即被锁定。已知R=0.5 m,d=4.4 m,L=1.8 m,M=m=0.1 kg,平板与滑块间的动摩擦因数μ1=0.6、与凹槽水平底面FG间的动摩擦因数为μ2。滑块视为质点,不计空气阻力,最大静摩擦力等于滑动摩擦力。(1)、滑块恰好能通过圆形轨道最高点C时,求滑块离开弹簧时速度v0的大小;(2)、若μ2=0,滑块恰好过C点后,求平板加速至与滑块共速时系统损耗的机械能;(3)、若μ2=0.1,滑块能到达H点,求其离开弹簧时的最大速度vm。35. 如图所示,长度为d的水平传送带M顺时针匀速运动。质量为m的小物块A在传送带左端M由静止释放。A还未与传送带达到相同速度时就从右端N平滑地进入光滑水平面NO,与向右运动的小物块B发生碰撞(碰撞时间极短)。碰后A、B均向右运动,从O点进入粗糙水平地面。设A与传送带间的动摩擦因数和A、B与地面间的动摩擦因数均为 , 重力加速度为g。(1)、求A在传送带上的加速度大小及离开传送带时的速度大小;(2)、若碰前瞬间,B的速度大小为A的一半,碰撞为弹性碰撞,且碰后A、B在粗糙地面上停下后相距d,求B的质量;(3)、若B的质量是A的n倍,碰后瞬间A和B的动量相同,求n的取值范围及碰后瞬间B的速度大小范围。36. 如图所示,一光滑水平面上有一固定的光滑曲面,曲面与水平面平滑相接,水平面右侧有一水平传送带,传送带的右端固定一挡板,挡板上固定有劲度系数k=20N/m的水平轻弹簧。现让一质量m=2kg的小物块从曲面上离地高度h=5m的位置由静止释放,传送带的速度水平向右,大小为 , 弹簧初始时最左端H到传送带与水平面连接点O的距离 , 传送带与物块间的动摩擦因数μ=0.5。已知最大静摩擦力等于滑动摩擦力,重力加速度g取。(1)、求物块运动到O点的速度大小;(2)、从滑上传送带到物块压缩弹簧达到最大静摩擦力的过程中,求传送带对物体所做的功;(3)、从物块滑上传送带至弹簧压缩最短过程中,结合弹簧振子的周期公式 , 求电动机对传送带多做的功。37. 如图所示,倾角α=37°的斜面AB通过平滑的小圆弧与水平直轨道BC连接,BC右端与顺时针转动的传送带相连,DE为水平长直轨道,左端与该传送带相连,右端与半径为R=0.4m的竖着的光滑半圆弧轨道EF相切,轨道最高点左侧有一小车放置在足够长的水平直轨道GH,小车右侧与F点相齐平,小车左侧安装了一个轻弹簧装置(质量不计)。DE轨道以及传送带长度均为L=1m,DE段铺设特殊材料,其动摩擦因数μ1=0.2x+0.2(x表示DE上一点到D点的距离)。物块与AB、传送带和小车上表面之间(除弹簧原长部分外)的动摩擦因数均为 , 其余部分均光滑。现在一质量为m=1kg的小物块(可视为质点)从斜面上某点静止下滑。已知小车质量M=3kg, d=1.2m, sin37°=0.6,cos37°=0.8。(1)、物块恰好到达F点,求物块进入圆弧E点时对轨道的压力;(2)、若物块释放的高度为3m,为让物块能到达F点,求传送带的转动速度至少多大;(3)、物块滑上小车后,与弹簧碰撞时机械能无损失,若小车撞上弹簧弹性势能超过18J时会触发机关把物块锁定,反之,物块被弹回,为使物块最终停留在小车上,求物块到达F点时的速度应满足的条件。38. 某地为发展旅游经济,因地制宜利用山体举办了机器人杂技表演。表演中,需要将质量为m的机器人抛至悬崖上的A点,图为山体截面与表演装置示意图。a、b为同一水平面上两条光滑平行轨道,轨道中有质量为M的滑杆。滑杆用长度为L的轻绳与机器人相连。初始时刻,轻绳??紧且与轨道平行,机器人从B点以初速度v竖直向下运动,B点位于轨道平面上,且在A点正下方,。滑杆始终与轨道垂直,机器人可视为质点且始终作同一竖直平面内运动,不计空气阻力,轻绳不可伸长, , 重力加速度大小为g。(1)、若滑杆固定, , 当机器人运动到滑杆正下方时,求轻绳拉力的大小;(2)、若滑杆固定,当机器人运动到滑杆左上方且轻绳与水平方向夹角为时,机器人松开轻绳后被抛至A点,求v的大小;(3)、若滑杆能沿轨道自由滑动, , 且 , 当机器人运动到滑杆左上方且轻绳与水平方向夹角为时,机器人松开轻绳后被抛至??点,求v与k的关系式及v的最小值。