2016-2017学年四川省成都市龙泉二中高三上学期期中数学试卷(理科)
试卷更新日期:2016-12-28 类型:期中考试
一、选择题
-
1. 若向量 、 满足:| |=1,( + )⊥ ,(2 + )⊥ ,则| |=( )A、2 B、 C、1 D、2. 设a、b都是不等于1的正数,则“3a>3b>3”是“loga3<logb3”的( )A、充要条件 B、充分不必要条件 C、必要不充分条件 D、既不充分也不必要条件3. 设m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是( )A、若m∥α,m∥β,则α∥β B、若m∥α,α∥β,则m∥β C、若m⊂α,m⊥β,则α⊥β D、若m⊂α,α⊥β,则m⊥β4. 已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为( )A、 B、 C、 D、5. 为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2 . 已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( )A、直线l1和l2相交,但是交点未必是点(s,t) B、直线l1和l2有交点(s,t) C、直线l1和l2由于斜率相等,所以必定平行 D、直线l1和l2必定重合6. 已知(x2﹣ )n的展开式中第三项与第五项的系数之比为 ,则展开式中常数项是( )A、﹣1 B、1 C、﹣45 D、457. 若按右侧算法流程图运行后,输出的结果是 ,则输入的N的值可以等于( )A、4 B、5 C、6 D、78. 在△ABC中,角A,B,C所对的边分别为a,b,c,若 = ,则cosB=( )A、﹣ B、 C、﹣ D、9. 双曲线 =1(a>0,b>0),M,N为双曲线上关于原点对称的两点,P为双曲线上的点,且直线PM,PN斜率分别为k1、k2 , 若k1•k2= ,则双曲线离心率为( )A、 B、 C、2 D、10. 已知f(x)=3sinx﹣πx,命题p:∀x∈(0, ),f(x)<0,则( )A、p是假命题,¬p:∀x∈(0, ),f(x)≥0 B、p是假命题,¬p:∃x0∈(0, ),f(x0)≥0 C、p是真命题,¬p:∀x∈(0, ),f(x)>0 D、p是真命题,¬p:∃x0∈(0, ),f(x0)≥011. 一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2,的最小值为( )
A、 B、 C、 D、12. 函数f(x)= 的图象大致是( )A、 B、 C、 D、二、填空题
-
13. 已知曲线C:x=﹣ ,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得 ,则m的取值范围为 .14. 若集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是 .15. 定义在R上奇函数的f(x)周期为2,当0<x<1时,f(x)=4x , 则f(﹣ )+f(1)= .16. 已知函数y=f(x)是定义在R上的偶函数,对于x∈R,都有f(x+4)=f(x)+f(2)成立,当x1 , x2∈[0,2]且x1≠x2时,都有 <0,给出下列四个命题:
①f(﹣2)=0;
②直线x=﹣4是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[4,6]上为增函数;
④函数y=f(x)在(﹣8,6]上有四个零点.
其中所有正确命题的序号为 .
三、解答题
-
17. 已知等差数列{an}的公差d>0,且a1•a6=11,a3+a4=12.(1)、求数列{an}的通项公式;(2)、求数列{ }的前n项和Tn .18. 已知函数f(x)=kx3+3(k﹣1)x2﹣k2+1在x=0,x=4处取得极值.(1)、求常数k的值;(2)、求函数f(x)的单调区间与极值;(3)、设g(x)=f(x)+c,且∀x∈[﹣1,2],g(x)≥2c+1恒成立,求c的取值范围.19. 四棱锥P﹣ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD中点,PA⊥底面ABCD,PA=2.(1)、证明:平面PBE⊥平面PAB;(2)、求直线PC与平面PBE所成的角的正弦值.20. 如图,已知椭圆C: =1(a>b>0)的离心率为 ,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.(1)、求椭圆C的方程;(2)、求 的最小值,并求此时圆T的方程;(3)、设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.21. 设函数f(x)=﹣2cosx﹣x+(x+1)ln(x+1),g(x)=k(x2+ ).其中k≠0.(1)、讨论函数g(x)的单调区间;(2)、若存在x1∈(﹣1,1],对任意x2∈( ,2],使得f(x1)﹣g(x2)<k﹣6成立,求k的取值范围.