2018年中考数学专题高分攻略6讲专题二开放探索型问题
试卷更新日期:2018-05-11 类型:二轮复习
一、单选题
-
1. 如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是( )A、△AEE′是等腰直角三角形 B、AF垂直平分EE' C、△E′EC∽△AFD D、△AE′F是等腰三角形
二、填空题
-
2.
如图,BC//EF,AC//DF,添加一个条件 , 使得△ABC≌△DEF.
3. 如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;
②AC与BD相互平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S= AC•BD.
正确的是(填写所有正确结论的序号)
4.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1 , 点A2 , A3 , …在直线l上,点B1 , B2 , B3 , …在x轴的正半轴上,若△A1OB1 , △A2B1B2 , △A3B2B3 , …,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为 .
5. 如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.6. 如图,四条直线l1:y1= x,l2:y2= x,l3:y3=﹣ x,l4:y4=﹣ x,OA1=1,过点A1作A1A2⊥x轴,交l1于点A2 , 再过点A2作A2A3⊥l1交l2于点A3 , 再过点A3作A3A4⊥l2交y轴于点A4…,则点A2017坐标为 .7. 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1= + + +…+ +….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1 , 再过点C1作C1C2⊥BC于点C2 , 又过点C2作C2C3⊥AB于点C3 , 如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假设AC=2,这些三角形的面积和可以得到一个等式是 .
三、综合题
-