北京市丰台区2016-2017学年八年级下学期数学期末考试试卷

试卷更新日期:2018-05-08 类型:期末考试

一、单选题

  • 1. 在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是(   )
    A、(2,3) B、(-2,3) C、(-2,-3) D、(2,-3)
  • 2. 如果一个多边形的每个内角都是120°,那么这个多边形是(   )
    A、五边形 B、六边形 C、七边形 D、八边形
  • 3. 下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是中心对称图形的是(   )

    A、①② B、②③ C、②④ D、②③④
  • 4. 方程 x(x1)=x 的解是(   )
    A、x = 0 B、x = 2 C、x1= 0,x2= 1 D、x1= 0,x2= 2
  • 5. 数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值 x¯ 与方差 S2


    x¯ (秒)

    30

    30

    28

    28

    S2

    1.21

    1.05

    1.21

    1.05

    要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择(   )

    A、 B、 C、 D、
  • 6. 矩形ABCD中,对角线ACBD相交于点O , 如果∠ABO=70°,那么∠AOB的度数是(   )​
    A、40° B、55° C、60° D、70°
  • 7. 用配方法解方程 x22x1=0 ,原方程应变形为(   )
    A、(x1)2=2 B、(x+1)2=2 C、(x1)2=1 D、(x+1)2=1
  • 8. 关于x的一元二次方程 kx22x+1=0 有两个实数根,那么实数k的取值范围是(   )
    A、k1 B、k<1k0 C、k1k0 D、k1
  • 9. 如图1所示,四边形ABCD为正方形,对角线ACBD相交于点O , 动点P在正方形的边和对角线上匀速运动. 如果点P运动的时间为x , 点P与点A的距离为y , 且表示 yx的函数关系的图象大致如图2所示,那么点P的运动路线可能为 (   )

    图1                            图2

    A、ABCA B、ABCD C、ADOA D、AOBC
  • 10. 德国心理学家艾宾浩斯(H.Ebbinghaus)研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论:

    ①记忆保持量是时间的函数

    ②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢

    ③学习后1小时,记忆保持量大约为40%

    ④遗忘曲线揭示出的规律提示我们学习后要及时复习

    其中错误的结论是(   )

    A、 B、 C、 D、

二、填空题

  • 11. 函数y= 1x2 中,自变量x的取值范围是
  • 12. 在△ABC中,DE分别是边ABAC的中点,如果DE=10,那么BC=
  • 13. “四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1, -1),那么表示人民大会堂的点的坐标是

  • 14. 在四边形ABCD中,对角线ACBD相交于点O . 如果ABCD , 请你添加一个条件,使得四边形ABCD成为平行四边形,这个条件可以是(写出一种情况即可)
  • 15. 在平面直角坐标系xOy中,一次函数 y=kxy=x+3 的图象如图所示,则关于x的一元一次不等式 kx<x+3 的解集是

  • 16. 下面是“作已知角的平分线”的尺规作图过程.

    请回答:该作图的依据是

三、解答题

  • 17. 解方程: x24x+3=0
  • 18. 在平面直角坐标系xOy中,已知一次函数 y=12x+1 的图象与x轴交于点 A ,与 y 轴交于点 B

    (1)、求 AB 两点的坐标;
    (2)、在给定的坐标系中画出该函数的图象;
    (3)、点M 1,y1),N(3,y2)在该函数的图象上,比较y1y2的大小.
  • 19. 已知:如图,EFABCD 的对角线BD上的两点,且BE=DF . 求证:AE∥CF

  • 20. 阅读下列材料:

    为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:

    请根据以上信息,解答下列问题:

    (1)、在频数分布表中,a = b =
    (2)、补全频数分布直方图;
    (3)、如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有人.
  • 21. “在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.

  • 22. 如图,在四边形 ABCD 中, AB=ADCB=CD ,我们把这种两组邻边分别相等的四边形叫做筝形.

    根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.

    (1)、小文根据筝形的定义得到筝形边的性质是
    (2)、小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.

    请你帮他将证明过程补充完整.

    已知:如图,在筝形 ABCD 中, AB=ADCB=CD .

    求证:∠B=∠D

    (3)、小文连接筝形的两条对角线,探究得到筝形对角线的性质是(写出一条即可)
  • 23. 已知关于x的一元二次方程 x2+mx+12m1=0
    (1)、求证:此方程有两个不相等的实数根;
    (2)、选择一个m的值,并求出此时方程的根.
  • 24. 小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1 , s2t之间的函数关系的图象.


    (1)、求s2t之间的函数表达式;
    (2)、小明从家出发,经过多长时间在返回途中追上爸爸?
  • 25. 已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.

    (1)、如图1,连接AFCF , 直接写出AFCF的数量关系;
    (2)、如图2,点EAD边的中点,当点F运动到线段EC上时,连接AFBE相交于点O.

    ①请你根据题意在图2中补全图形;②猜想AFBE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.

  • 26. 在平面直角坐标系xOy中,如果点A , 点C为某个菱形的一组对角的顶点,且点AC在直线y = x上,那么称该菱形为点AC的“极好菱形”. 下图为点AC的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).

    (1)、点E(2,1),F(1,3),G(4,0)中,能够成为点MP的“极好菱形”的顶点的是
    (2)、如果四边形MNPQ是点MP的“极好菱形”.

    ①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y = x + b有公共点时,写出b的取值范围.