2017-2018学年数学浙教版八年级下册2.3.1一元二次方程的应用(课时1)同步练习

试卷更新日期:2018-04-23 类型:同步测试

一、填空选择题

  • 1. “低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具,某运动商城的自行车销售量自2015年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆,若该商城自2015起每个月自行车销量的月平均增长率相同,求月平均增长率.若设月平均增长率为x,由题意可得方程:
  • 2. 已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是(   )
    A、5 B、7 C、5或7 D、10
  • 3. 某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得(   )

    A、168(1+x)2=128 B、168(1﹣x)2=128 C、168(1﹣2x)=128 D、168(1﹣x2)=128
  • 4. 某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为(   )

    A、48(1﹣x)2=36 B、48(1+x)2=36 C、36(1﹣x)2=48 D、36(1+x)2=48

二、解答题

  • 5. 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
  • 6. 超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.如果要使每天销售饮料获利14000元,问每箱应降价多少元? 同时为了减少库存,那应降价多少?
  • 7. 截止到2000年12月31日,我国的上网计算机总数为900万台;截止到2002年12月31日,我国的上网计算机总数以达1800万台.

    (1)、求2000年12月31日至2002年12月31日我国的上网计算机台数的年平均增长率(精确到0.1%)
    (2)、上网计算机总数2001年12月31日至2003年12月31日的年平均增长率与2000年12月31日至2002年12月31日的年平均增长率相比,哪段时间年平均增长率较大?
  • 8. 某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
  • 9. 某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?
  • 10. 今年3月,位于虎溪大学城的龙湖“千万间”公租房项目开始动工.这是一个让人心动的“民生住房账本”未来10年,重庆市将建设4000万平方米的公共租赁房,今年开建500万平方米,3年(2010年~2012年)时间内完成2000万平方米的建设任务.某建筑公司积极响应,计划在今年12个月完成一定的建房任务.已知每平米的成本为1200元,按每平方米1600元的价格卖给政府.该公司平时每月能建2000平方米,为了加快进度,公司采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到提高.这样,第一月建了2200平方米,以后每月建房都比前一月多200平方米.由于机器损耗等原因,每增加100平方米,当月的所有建筑面积,平均每1平方米的成本就增加2元
    (1)、若全市公共租赁房今年(2010年)到明年的建筑面积增长率就是以后每年的增长率,求此增长率.
    (2)、今年4月份玉树发生了7.1级地震,该公司决定把最近某个月144万元的利润捐给灾区、请问是第几的个月?
  • 11. 为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同
    (1)、求每年市政府投资的增长率;
    (2)、若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?
  • 12. 某工厂一种产品2013年的产量是300万件,计划2015年的产量达到363万件.假设2013年到2015年这种产品产量的年增长率相同.
    (1)、求2013年到2015年这种产品产量的年增长率;
    (2)、2014年这种产品产量应达到多少万件?