备考2018年中考数学一轮基础复习:专题十七 全等三角形

试卷更新日期:2018-04-09 类型:一轮复习

一、单选题

  • 1. 如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长为(   )

    A、6 B、132 C、5 D、3241
  • 2. 如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,则下列结论:

    ①OA=OD;

    ②AD⊥EF;

    ③AE+DF=AF+DE;

    ④当∠BAC=90°时,四边形AEDF是正方形.

    其中一定正确的是(   )


    A、①②③ B、②③④ C、①③④ D、①②③④
  • 3.

    某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是(  )

    A、带①去 B、带②去 C、带③去 D、①②③都带去
  • 4. 如图,在△ABC中,D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是(   )

    A、15° B、20° C、25° D、30°
  • 5.

    如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:

    ①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH

    其中正确的结论有(   )

    A、2个 B、3个 C、4个 D、5个
  • 6. 如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是(   )

    A、30 B、34 C、36 D、40
  • 7. 如图,已知∠MAN=55°,点B为AN上一点.用尺规按如下过程作图:

    以点A为圆心,以任意长为半径作弧,交AN于点D,交AM于点E;以点B为圆心,以AD为半径作弧,交AB于点F;以点F为圆心,以DE为半径作弧,交前面的弧于点G;连接BG并延长交AM于点C.则∠BCM的度数为(   )

    A、70° B、110° C、125° D、130°
  • 8. 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是(   )

    ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2 5 ﹣2.

    A、2 B、3 C、4 D、5
  • 9. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOE:S四边形DGOF=2:7.其中正确结论的个数是(   )

    A、4个 B、3个 C、2个 D、1个
  • 10. 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是(   )

    A、122016 B、122017 C、332016 D、332017
  • 11. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于 12 MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是(    )

    A、15 B、30 C、45 D、60
  • 12. 如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为(   )

    A、127 B、247 C、487 D、507
  • 13.

    如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是(   )

    A、BO=OH B、DF=CE C、DH=CG D、AB=AE
  • 14. 如图,对正方形纸片ABCD进行如下操作:

    (i)过点D任作一条直线与BC边相交于点E1(如图①),记∠CDE11

    (ii)作∠ADE1的平分线交AB边于点E2(如图②),记∠ADE22

    (iii)作∠CDE2的平分线交BC边于点E3(如图③),记∠CDE33

    按此作法从操作(2)起重复以上步骤,得到α1 , α2 , …,αn , …,现有如下结论:①当α1=10°时,α2=40°;②2α43=90°; ③当α5=30°时,△CDE9≌△ADE10;④当α1=45°时,BE2= 2AE2

    其中正确的个数为(   )

    A、1 B、2 C、3 D、4
  • 15.

    如图,在矩形ABCD中,P是BC上一点,E是AB上一点,PD平分∠APC,PE⊥PD,连接DE交AP于F,在以下判断中,不正确的是(   )

    A、当P为BC中点,△APD是等边三角形 B、当△ADE∽△BPE时,P为BC中点 C、当AE=2BE时,AP⊥DE D、当△APD是等边三角形时,BE+CD=DE

二、填空题

  • 16.

    如图,E为正方形ABCD中CD边上一点,∠DAE=30°,P为AE的中点,过点P作直线分别与AD、BC相交于点M、N.若MN=AE,则∠AMN等于

  • 17. 如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为E点,请任意写出一组相等的线段

  • 18. 如图,在△ABC与△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D在AB上,点E与点C在AB的两侧,连接BE,CD,点M、N分别是BE、CD的中点,连接MN,AM,AN.

    下列结论:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等边三角形;④若点D是AB的中点,则SABC=2SABE

    其中正确的结论是 . (填写所有正确结论的序号)

  • 19. 如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是(用含m的代数式表示)

  • 20.

    如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为

  • 21.

    如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+b2 , 其中正确结论是(填序号)

三、综合题

  • 22. 已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.

    (1)、求证:△ADE≌△FCE;
    (2)、若∠DCF=120°,DE=2,求BC的长.
  • 23.

    已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O,点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:

    (1)、当t为何值时,AP=PO.

    (2)、设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;

    (3)、在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.

  • 24. 问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD= 12 ∠BAC=60°,于是 BCAB = 2BDAB = 3

    迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.

    (1)、①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;
    (2)、拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.

    ①证明△CEF是等边三角形;

    ②若AE=5,CE=2,求BF的长.

  • 25. △ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.

    (1)、

    观察猜想

    如图1,当点D在线段BC上时,

    ①BC与CF的位置关系为:

    ②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)

    (2)、

    数学思考

    如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.

    (3)、

    拓展延伸

    如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2 2 ,CD= 14 BC,请求出GE的长.