2017-2018学年北师大版数学九年级下册同步训练:2.4.1 二次函数的应用
试卷更新日期:2018-03-09 类型:同步测试
一、选择题
-
1. 足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t= ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是( )
A、1 B、2 C、3 D、42. 烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣ t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A、3s B、4s C、5s D、6s3. 一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣ (x﹣2.5)2+3.5.已知篮圈中心到地面的距离3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为( )A、1米 B、2米 C、4米 D、5米4. 为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是( )A、600 m2 B、625 m2 C、650 m2 D、675 m25. 如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣ x2+ x+ ,则该运动员此次掷铅球的成绩是( )A、6m B、12m C、8m D、10m6. 如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得( )A、比开始高0.8m B、比开始高0.4m C、比开始低0.8m D、比开始低0.4m7. 一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣ t2+ t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是( )A、1米 B、1.5米 C、1.6米 D、1.8米8. 飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2 , 则飞机着陆后滑行到停止下列,滑行的距离为( )
A、500米 B、600米 C、700米 D、800米9. 军事演习时发射一颗炮弹,经xs后炮弹的高度为ym,且时间x(s)与高度y(m)之间的函数关系为y=ax2+bx(a≠0),若炮弹在第8s与第14s时的高度相等,则在下列哪一个时间的高度是最高的( )A、第9s B、第11s C、第13s D、第15s10. 如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )A、球不会过网 B、球会过球网但不会出界 C、球会过球网并会出界 D、无法确定二、填空题
-
11. 飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣ t2 , 则飞机着陆后滑行的最长时间为秒.
12. 如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2 , 则y的最大值为 .13. 已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为m2 .14. 某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是 m.15. 用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2 .16. 张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣ x2+ x+2,则大力同学投掷标枪的成绩是m.
三、解答题
-
17. 为了改善小区环境,某小区决定要在一块一边靠墙(墙长 25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为 40m 的栅栏围住(如图).设绿化带的BC 边长为x m,绿化带的面积为y m2 .(1)、求y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(2)、当x 为何值时,满足条件的绿化带的面积最大?
18. 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)、如图1,问饲养室长x为多少时,占地面积y最大?(2)、如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.