甘肃省金昌市金川高级中学2025届高三下学期高考冲刺(一)数学试卷

试卷更新日期:2025-05-06 类型:高考模拟

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1. 已知集合A=1,0,1,B={xx<1} , 则AB=(       )
    A、1,0,1 B、1,0 C、0,1 D、1
  • 2. 若z=1+i1i , 则z2=(       )
    A、1 B、1 C、2i D、2i
  • 3. 已知函数fx=xa,x0,ax,x<0,f16=2 , 则f1=(       ).
    A、12. B、14. C、2. D、4.
  • 4. 如图,网格纸上小正方形的边长为1,向量a,b,c的起点和终点均在格点上,则向量b+c在向量a上的投影向量为(       )

       

    A、12a B、12a C、32a D、a
  • 5. 若sinα=cosα+35 , 则tanα+1tanα=(       )
    A、825 B、1625 C、258 D、2516
  • 6. 已知数列log2an+1是以1为首项,2为公差的等差数列,则数列an的前10项和为(       )
    A、2101 B、41013 C、2112 D、22123
  • 7. 函数y=sin2xy=sinx2的图象在区间2π,2π上的交点个数为(       )
    A、3 B、5 C、7 D、9
  • 8. 如图,F1,F2分别为双曲线C:x2a2y2b2=1a>0,b>0的左、右焦点,点A,B都在双曲线C上,四边形ABF2F1为等腰梯形,且AF1=F1F2=BF2=2cABF2=π3 , 则双曲线C的离心率为(       )

    A、3 B、3+12 C、2 D、3+1

二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.

  • 9. 某研究机构在训练人工智能模型时,有两种训练算法甲和乙,使用算法甲训练了30次,每次训练耗时的平均数为2,方差为0.25,使用算法乙训练了20次,每次训练耗时的平均数为1.5,方差为0.3,则(       )
    A、总体每次训练平均耗时1.8小时 B、总体每次训练平均耗时1.75小时 C、总体每次训练耗时的方差为0.28 D、总体每次训练耗时的方差为0.33
  • 10. 如图,在圆柱O1O2中,轴截面ABCD是边长为2的正方形,M是以AO2为直径2的圆上一动点(异于点A,O2),AM与圆柱的底面圆交于点N , 则(       )

    A、MO2平面NBO1 B、平面MO1O2平面ANO1 C、直线NB与直线AO1有可能垂直 D、三棱锥MAO1O2的外接球体积为定值
  • 11. 如图,在4×4的方格中,移动规则如下:每行均可左右移动,每列均可上下移动,每次仅能对某一行或某一列进行移动,其他行或列不变化.

    例如:

    4

    4

    1

    3

    4

    3

    2

    1

    1

    2

    3

    2

    2

    1

    4

    3

    下列4×4的方格中,哪些图形可由上图经过4次移动得到(       )

    A、

    4

    4

    1

    3

    4

    3

    2

    1

    1

    2

    3

    2

    2

    1

    4

    3

    B、

    4

    2

    4

    3

    1

    1

    1

    1

    2

    4

    2

    2

    4

    3

    3

    3

    C、

    3

    4

    4

    4

    1

    3

    1

    1

    2

    2

    2

    2

    4

    1

    3

    3

    D、

    4

    4

    1

    3

    4

    3

    4

    1

    3

    2

    1

    2

    2

    1

    2

    3

三、填空题:本题共3小题,每小题5分,共15分.

  • 12. 已知P是椭圆C:x29+y2n=1上的动点,A2,0,B2,0 , 且PA+PB=6 , 则n=.
  • 13. 函数fx=lnx+2x的最小值为.
  • 14. 现从一含10个元素的集合S的子集中随机选出2个不同的子集,被选出的子集之间必须满足包含或被包含的关系,则满足该选取条件的选法有种.

四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.

  • 15. 在ABC中,内角A,B,C所对的边分别为a,b,c , 且cosB=bc=a+b2c.
    (1)、证明:a=ccosB.
    (2)、求C.
    (3)、若a=3,DAB上靠近点A的三等分点,作BECDCD于点E , 求cosEBD.
  • 16. 某学校高三年级组织了一场校内知识挑战赛,共有5个班级参与,每个班级推选1名学生代表参加,其中1名学生代表来自A类班级,4名学生代表来自B类班级,学生甲是B类班级代表之一.在某一轮比赛中,随机选择两名学生代表进行比赛.若是同类班级代表比赛,则双方获胜的概率均为12;若是A类班级代表与B类班级代表比赛,则B类班级代表获胜的概率为25.
    (1)、已知学生甲参赛,求在一轮比赛中,学生甲获胜的概率;
    (2)、若每两个班级代表各进行一轮比赛,记B类班级代表甲获胜的轮数为X , 求X的分布列与期望.
  • 17. 如图所示,在边长为2的正方体ABCDA1B1C1D1中,E,F分别是棱AB,BC上的点(异于端点),且AE=FC

    (1)、证明:A1EC1F相交且交点在直线BB1上.
    (2)、当直线A1B1与平面C1A1E所成角的正弦值为23时,求AE的值.
  • 18. 已知抛物线T:y2=2pxp>0 , 过抛物线上一点A1,p作两条直线l1,l2分别交抛物线TB,C两点,直线l1,l2的斜率分别为k1,k2 , 且k1k2=4.
    (1)、求抛物线T的方程.
    (2)、证明:直线BC过定点.
    (3)、记直线BC经过的定点为M,N为直线BC上一点(异于点M),且满足BMCM=BNCN , 证明点N在某定直线上,并求出该定直线的方程.
  • 19. 设函数fx的定义域为R.若实数λ满足对任意的x1,x2R , 都有fx1+x22fx1+fx22λx1x22 , 则称fx满足Pλ性质.
    (1)、若函数fx=ax2满足P12性质,求实数a的取值范围.
    (2)、设fx的导函数为f'xxR , 且对任意的x1,x2R,x1x2 , 都有f'x1f'x2x1x2>8λx1x22.

    (i)证明:fx满足Pλ性质.

    (ii)已知数列an满足an=fnn4λnnN* , 若f0=0 , 证明:an+1an.