上海市杨浦区2025届高三上学期模拟质量调研(一模)数学试题

试卷更新日期:2024-12-20 类型:高考模拟

一、填空题(本大题满分54分,共12题,第1—6题每题4分,第7—12题每题5分)

  • 1. 已知集合A=a,b , 则A的子集个数为.
  • 2. 函数y=sin2x的最小正周期是
  • 3. 不等式 x+2x1<0 的解集为.
  • 4. 已知函数y=x2+ax+1是偶函数,则实数a的值为.
  • 5. 已知x+3+x5=8 , 则实数x的取值范围为.
  • 6. 已知a=b=1 , 若2abb , 则向量ab的夹角的余弦值为.
  • 7. 已知一个正四棱锥的每一条棱长都为2,则该四棱锥的体积为.
  • 8. 某次杨浦区高三质量调研数学试卷中的填空题第八题,答对得5分,答错或不答得0分,全区共4000人参加调研,该题的答题正确率是60% , 则该次调研中全区同学该题得分的方差为.
  • 9. 将一个半径为1的球形石材加工成一个圆柱形摆件,则该圆柱形摆件侧面积的最大值为.
  • 10. 已知fx=x13,0xa,log3x,x>a , 其中实数a>0.若函数y=fx2有且仅有2个零点,则a的取值范围为.
  • 11. 中国探月工程又称“嫦娥工程”,是中国航天活动的第三个里程碑.在探月过程中,月球探测器需要进行变轨,即从一条椭圆轨道变到另一条不同的椭圆轨道上.若变轨前后的两条椭圆轨道均以月球中心为一个焦点,变轨后椭圆轨道上的点与月球中心的距离最小值保持不变,而距离最大值扩大为变轨前的4倍,椭圆轨道的离心率扩大为变轨前的2.5倍,则变轨前的椭圆轨道的离心率为.(精确到0.01)
  • 12. 已知实数a>0i是虚数单位,设集合A=zz=w+1w,w>1,wC,zC , 集合B=zz1+i=a,zC , 如果BA , 则a的取值范围为.

二、选择题(本大题满分18分,共4题,第13、14题每题4分,第15、16题每题5分.)

  • 13. 已知实数a0 , 则“a>2”是“1a<12”的(       )条件.
    A、充分非必要 B、必要非充分 C、充分必要 D、既非充分也非必要
  • 14. 如果AB是独立事件,A¯,B¯分别是AB的对立事件,那么以下等式不一定成立的是(       ).
    A、PAB=PAPB B、P(A¯B)=P(A¯)P(B) C、PAB=PA+PB D、P(A¯B¯)=[1P(A)][1P(B)]
  • 15. 小李研究数学建模“雨中行”问题,在作出“降雨强度保持不变”、“行走速度保持不变”、“将人体视作一个长方体”等合理假设的前提下,他设了变量:

    人的身高

    人体宽度

    人体厚度

    降雨速度

    雨滴密度

    行走距离

    风速

    行走速度

    h

    w

    d

    vr

    p

    D

    vw

    v

    并构建模型如下:

    当人迎风行走时,人体总的淋雨量为T=pwDvdvr+hvw+v.

    根据模型,小李对“雨中行”作出如下解释:

    ①若两人结伴迎风行走,则体型较高大魁梧的人淋雨是较大;

    ②若某人迎风行走,则走得越快淋雨量越小,若背风行走,则走得越慢淋雨量越小;

    ③若某人迎风行走了10秒,则行走距离越长淋雨量越大.

    这些解释合理的个数为(       )

    A、0 B、1 C、2 D、3
  • 16. 设无穷数列an的前n项和为Sn , 且对任意的正整数n,an+1=Snan , 则i=15a2ii=16a2i1的值可能为(       )
    A、6 B、0 C、6 D、12

三、解答题(本大题满分78分,共5题.)

  • 17. 如图,在正方体ABCDA1B1C1D1中,点EF分别是棱ABBC的中点.

    (1)、求证:EFBD1
    (2)、求二面角B1EFB的大小.
  • 18. 已知ABC的内角ABC所对边的长度分别为abc.
    (1)、若(a+b)2c2=4,C=60° , 求ABC的面积;
    (2)、若cosCc=cosA3ba , 求sinC的值.
  • 19. 为加强学生睡眠监测督导,学校对高中三个年级学生的日均睡眠时间进行调查.根据分层随机抽样法,学校在高一、高二和高三年级中共抽取了100名学生的日均睡眠时间作为样本,其中高一35人,高二33人.已知该校高三年级一共512人.
    (1)、学校高中三个年级一共有多少个学生?
    (2)、若抽取100名学生的样本极差为2,数据如下表所示(其中x<10,n是正整数)

    日均睡眠时间(小时)

    x

    8.5

    9

    9.5

    10

    学生数量

    n

    32

    13

    11

    4

    求该样本的第40百分位数.

    (3)、从这100名学生的样本中随机抽取三个学生的日均睡眠时间,求其中至少有1个数据来自高三学生的概率.
  • 20. 如图所示,已知抛物线Γ:y2=x , 点ABCD是抛物线上的四个点,其中AD在第一象限,BC在第四象限,满足ABCD , 线段ACBD交于点H.记线段ABCD的中点分别为MN.

    (1)、求拋物线Γ的焦点坐标;
    (2)、求证:点MHN三点共线;
    (3)、若2HM=HN=2 , 求四边形ABCD的面积.
  • 21. 已知y=fx是定义域为0,1的函数,实数p0,1 , 称函数y=1pf0+pfxfpx,x0,1为函数y=fx的“p-生成函数”,记作y=Fpx,x0,1.
    (1)、若fx=cos2πx , 求函数y=F12x的值域;
    (2)、若fx=ax2+ln1+x , 函数y=F13x满足F13x0对任意的0x1恒成立,求实数a的取值范围;
    (3)、若y=fx满足:①f0=0;②y=fx0,1上存在导函数y=f'x , 且y=f'x0,1上是严格增函数;③对于任意p0,1,y=fx的“p-生成函数”y=Fpx,x0,1的图像是一段连续曲线,求证:函数y=fxx0,1上是严格增函数.