四川省成都市蓉城联盟2024-2025学年高一上学期期末考试数学试卷
试卷更新日期:2024-12-24 类型:期末考试
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1. 若集合 , 集合 , 则“”是“”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件2. 在平面直角坐标系中,若角的始边与轴的非负半轴重合,终边落在直线上,则终边与角相同的角的集合为( )A、或 B、 C、 D、3. 下列函数中,既是偶函数,又在区间上单调递减的函数是( )A、 B、 C、 D、4. 已知函数 , 若 , 则( )A、9 B、6 C、4 D、25. 若实数满足 , 则下列不等式成立的是( )A、 B、 C、 D、6. 已知某糕点店制作一款面包的固定成本为400元,每次制作个,每天每个面包的存留成本为1元,若每个面包的平均存留时间为天,为了使每个面包的总成本最小,则每天应制作( )A、20个 B、30个 C、40个 D、50个7. 若正实数满足 , 则函数与函数的图象可能是( )A、
B、
C、
D、
8. 若函数恰有两个零点,则实数的取值范围为( )A、 B、 C、 D、二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
-
9. 已知全集 , 集合 , 集合 , 则( )A、 B、的子集个数为8 C、 D、10. 已知函数 , 则关于函数的说法正确的是( )A、定义域为且 B、关于点对称 C、在区间上为增函数 D、值域为11. 已知函数 , 若 , 使成立,则实数的值可以是( )A、 B、 C、 D、
三、填空题:本题共3小题,每小题5分,共15分.
-
12. 函数的定义域为.13. 若第二象限角的终边与单位圆交点的横坐标为 , 则 .14. 已知函数 , 对任意的 , 若 , 恒有 , 则实数的取值范围为 .
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
-
15. 已知函数 ,(1)、在下图平面直角坐标系中画出函数的图象;(2)、解关于的方程 .
五、
-
16. (1)若角满足 , 且 , 求 , 的值;
(2)若集合 , 且 , 求实数的取值范围.
17. 17世纪,牛顿发现物体表面的热流密度与物体表面温度和周围环境温度之差成正比,其原理是当一个物体表面的温度高于周围环境的温度时,物体将会通过热传导、对流和辐射等方式向周围环境释放热量.如:一杯热茶水会在常温下逐渐冷却,设茶水的冷却时间为(单位:),茶水冷却后水温为(单位:),根据该机理,我们得到函数模型: , 其中为茶水的初始温度,为室温,为冷却系数.李大爷在室温的条件下泡了一杯的茶水,后,测得水温为 .(1)、求冷却系数;(2)、经研究表明,饮水温度不宜高于 , 以保证口腔与食管不受到损害,根据该模型判断后该杯茶水是否宜于饮用,并说明理由.
-