北京市丰台区2024-2025学年高二上学期11月期中考试数学试题

试卷更新日期:2024-11-12 类型:期中考试

一、选择题:本部分共10小题,每小题4分,共40分.在每小题给出的四个选项中,选出最符合题意的一项.

  • 1. 已知a=(2,1,1)b=(4,2,x) , 且a//b , 则x=(       )
    A、10 B、2 C、2 D、10
  • 2. 若直线 l 过两点 (00)(13) ,则直线 l 的倾斜角为(    )
    A、23π B、π3 C、56π D、π6
  • 3. 过点 A(14) ,且横、纵截距相等的直线方程为(    )
    A、y=4xy=x B、x+y+5=0y=4x C、xy+3=0x+y5=0 D、x+y5=0y=4x
  • 4. 已知以点0,1为圆心,2为半径的圆C , 则点M1,2与圆C的位置关系是(       )
    A、在圆内 B、在圆上 C、在圆外 D、无法判断
  • 5. 如图,在平行六面体ABCDEFGH中,AB=a,AD=b,AE=cI为线段CH的中点,则AI可表示为(       )

       

    A、12a+12b+c B、12a+b+12c C、12a12b+c D、12a12b+c
  • 6. 在空间直角坐标系Oxyz中,若点B1,2,3关于y轴的对称点为点B' , 点C1,1,2关于Oyz平面的对称点为点C' , 则B'C'=(       )
    A、2,1,1 B、0,3,5 C、2,1,-1 D、0,3,5
  • 7. 过原点且倾斜角为30°的直线被圆x2+(y2)2=4所截得的弦长为(       )
    A、1 B、2 C、3 D、23
  • 8. 设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB| , 若直线PA的方程为xy+1=0 , 则直线PB的方程为(       )
    A、2x+y7=0 B、2xy4=0 C、x+y5=0 D、x+y1=0
  • 9. 在棱长为4的正方体内有一点P,它到该正方体共顶点的三个面的距离分别为2,1,1,记正方体的中心为点O,则OP =(       )
    A、10 B、6 C、2 D、2
  • 10. 在棱长为2的正四面体ABCD中,点M满足AM=xAB+yAC-(x+y-1)AD , 点N满足BNBA+(1-λ)BC , 当AM、BN最短时,AM·MN=(       )
    A、-43 B、43 C、-13 D、13

二、填空题:本题共5小题,每小题5分,共25分.

  • 11. 圆x2+y22x+6y+9=0的圆心坐标为;半径为.
  • 12. 已知直线lα , 且l的方向向量为(2,m,1) , 平面α的法向量为(1,1,2) , 则m=.
  • 13. 已知两平行直线l1:x+2y3=0l2:2x+my1=0 , 则l1l2间的距离是.
  • 14. 已知AB=(2,1,3)AC=(1,1,2)AD=(2,1,λ) , 若A,B,C,D四点共面,则实数λ=.
  • 15. 在平面直角坐标系中,定义d(A,B)=max{|x1x2|,|y1y2|}为两点A(x1,y1),B(x2,y2)的“切比雪夫距离”,又设点P及直线l上任一点Q , 称d(P,Q)的最小值为点P到直线l的“切比雪夫距离”,记作d(P,l).已知点P(3,1)和直线l:2xy1=0 , 则d(P,l)=;若定点C(x0,y0) , 动点P(x,y)满足d(C,P)=r(r>0) , 则点P所在的曲线所围成图形的面积是.

三、解答题:本题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.

  • 16. 已知直线 l1 过点 (22) ,直线 l2y=x
    (1)、若 l1l2 ,求直线 l1 的方程;
    (2)、若直线 l1x 轴和直线 l2 围成的三角形的面积为 2 ,求直线 l1 的方程.
  • 17. 如图所示,在三棱柱ABCA1B1C1中,CA=a,CB=b,CC1=cCA=CB=CC1=2ACB=ACC1=2π3BCC1=π2 , 点N是棱AB的中点,点M在棱C1B1上,且C1M=2MB1.

    (1)、用a,b,c表示向量AM
    (2)、求AM
    (3)、求证:AMA1N.
  • 18. 已知圆C:x2+y22x+4y4=0 , 圆C1:(x3)2+(y1)2=4及点P(3,1).
    (1)、判断圆C和圆C1的位置关系,并说明理由;
    (2)、若斜率为k的直线l经过点P且与圆C相切,求直线l的方程.
  • 19. 如图,在长方体ABCDA1B1C1D1中,AB=3AD=AA1=2 , 点EAB上,且AE=1.

    (1)、求直线BC1与直线CE所成角的大小;
    (2)、求直线BC1与平面A1EC所成角的正弦值;
    (3)、若点P在侧面A1ABB1上,且点P到直线BB1CD的距离相等,求点P到直线AD1距离的最小值.
  • 20. 如图,在四棱锥PABCD中,CD平面PADPAD为等腰三角形,PA=PD=5ADBCAD=CD=2BC=2 , 点E,F分别为棱PD,PB的中点.

    (1)、求证:直线BD//平面AEF
    (2)、求直线BD到平面AEF的距离;
    (3)、试判断棱PC上是否存在一点G,使平面AEF与平面ADG夹角的余弦值为357 , 若存在,求出PGPC的值;若不存在,请说明理由.
  • 21. 已知圆M的圆心在y轴上,半径为2,且经过点A(2,2).
    (1)、求圆M的标准方程;
    (2)、设点D(0,1) , 过点D作直线l1 , 交圆M于P,Q两点(P,Q不在y轴上),过点D作与直线l1垂直的直线l2 , 交圆M于E,F两点,记四边形EPFQ的面积为S,求S的最大值.