浙江省杭州市十三中集团2024-2025学年九年级上学期数学期中试题卷
试卷更新日期:2024-11-18 类型:期中考试
一、选择题(每小题3分,共30分,每小题给出的四个选项中,只有一个正确选项)
-
1. 下列事件是必然事件的是( )A、明天早上会下雨 B、掷一枚硬币,正面朝上 C、任意一个三角形,它的内角和等于180° D、一个图形旋转后所得的图形与原图形不全等2. 在所在平面内有一点 , 若半径为5,则点与的位置关系是( )A、点在内 B、点在外 C、点在上 D、无法判断3. 从甲、乙、丙三人中任选一人参加青年志愿者活动,甲被选中的概率是( )A、 B、 C、 D、4. 如图,绕点顺时针旋转到的位置,已知 , 则等于( )A、55° B、45 C、40° D、355. 二次函数y=(x-3)(x+5)的图象的对称轴是( )A、直线x=3 B、直线x=-5 C、直线x=1 D、直线x=-16. 如图,四边形BCD内接于⊙O,如果它的一个外角∠DCE=64,那么∠BOD=( )A、 B、 C、 D、7. 二次函数的图象大致是( )A、 B、 C、 D、8. 某项目化研究小组只用一张矩形纸条和刻度尺,来测量一次性纸杯杯底的直径,小敏同学想到了如下方法:如图,将纸条拉直并紧贴杯底:纸条的上下边沿分别与杯底相交于A、B、C、D四点,然后利用刻度尺量得该纸条的宽为3.5cm,AB=4cm,CD=3cm.则该纸杯杯底的直径为( )A、4.8cm B、5cm C、5.2cm D、6cm9. 已知函数y=ax2+2ax-1(a是常数,a≠0),下列结论正确的是( )A、当a=1时,函数图象过点(-1,1) B、函数图象与x轴必有两个交点 C、不论a取何值,函数图象都经过点(-2,-1) D、若a<0,则当x≤-1时,y随x的增大而减小10. 已知⊙O为ΔABC的外接圆,AB=BC.过A作CO的垂线交CO延长线于点D,则下列选项一定成立的是( )A、 B、 C、 D、
二、填空题(每小题3分,共18分)
-
11. 如表是某种植物的种子在相同条件下发芽率试验的结果.
种子个数
100
400
900
1500
2500
4000
发芽种子个数
92
352
818
1336
2251
3601
发芽种子频率
0.92
0.88
0.91
0.89
0.90
0.90
根据表中的数据,可估计该植物的种子发芽的概率为.
12. 如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是 .13. 一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的和是14. 已知二次函数 , 当时,的取值范围是.15. 如图,四边形ABCD内接于 , 对角线BD是的直径.为内一点,满足 , , 若 , 则弦BC的长为.16. 二次函数是常数,图象的对称轴是直线 , 其图象一部分如图所示,对于下列说法:①;②;③方程有两个不相等的实数根;④(为任意实数).其中正确的是.(填写序号)三、解答题(本题有8小题,共72分,解答应写出文字说明,证明过程或推演步骤.)
-
17. 已知二次函数的图象顶点坐标是(0,0),且经过(1,-2)(1)、求这个二次函数的表达式;(2)、判断点P(-2,-8)是否在这条抛物线的图象上18. 如图,AB是的直径,点是上一点,连接于 , 交于点.(1)、求证:OD∥AC;(2)、若BC=8,DE=2,求⊙O的半径,19. 作图题,根据要求作出以下图形:(1)、在图1网格中直接画出△ABC绕点A逆时针旋转90°的图形;(2)、在图2中,已知线段AB,尺规作图作出经过A,B两点的所有圆中最小的圆,(要求保留作图痕迹)20. 睡眠管理作为“五项管理”中的重要内容之一,也是学校教育重点关注的内容,某校为了解学生平均每天睡眠时间,随机抽取该校部分学生进行问卷调查,并将结果进行了统计和整理,绘制成如下统计表和不完整的统计图.
某校学生睡眠时间各类别人数情况统计图
学生类别
学生平均每天睡眠时间x(单位:小时)
A
7≤x<7.5
B
7.5≤x<8
C
8≤x<8.5
D
8.5≤x<9
E
x≥9
(1)、扇形统计图中表示C类学生平均每天睡眠时间的扇形的圆心角度数为.(2)、请补全条形统计图.(3)、被抽取调查的E类4名学生中有2名女生,2名男生,从这4人中随机抽取2人进行电话问访,请用画树状图或列表的方法,求恰好抽到2名男生的概率.21. 某商店购进一种商品,每件商品进价20元,规定该商品的售价不低于进价,且不高于进价的两倍.试销中发现这种商品每天的销售量,(件)与每件销售价x(元)的关系数据如下:x
300
32
34
36
y
40
36
32
28
(1)、已知y与x满足一次函数关系,根据上表,求出了与x之间的关系式;(2)、设该商店每天销售这种商品所获利润为w(元),求出每件商品销售价定为多少元时利润最大,并求出最大利润?22. 某地欲搭建一桥,桥的底部两端间的距离AB=L称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h确定时,有两种设计方案可供选择:①抛物线型:②)圆弧型,已知这座桥的跨度L=20米,拱高h=5米.(1)、如图1,若设计成抛物线型,以AB所在直线为x轴,B的垂直平分线为y轴建立坐标系,求此函数表达式;(2)、如图2,若设计成圆弧型,求该圆弧所在圆的半径;(3)、现有一艘宽为15米的货船,船舱顶部为方形,并高出水面2.2米,从以上两种方案中,任选一种方案,判断此货船能否顺利通过你所选方案的桥?并说明理由.