浙江省金华市2023-2024学年高三上学期2月期末考试数学试题
试卷更新日期:2024-02-25 类型:期末考试
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1. 已知集合 , , 则( )A、 B、 C、 D、2. ( )A、 B、 C、 D、3. 已知 , , , 则( )A、 B、 C、 D、4. 若 , 则( )A、 B、2 C、1 D、05. 某次数学联考成绩的数据分析,20000名考生成绩服从正态分布 , 则80分以上的人数大约是( )
参考数据:若 , 则
A、3173 B、6346 C、6827 D、136546. 在中,“”是“为锐角三角形”的( )A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分也不必要条件7. 若 , 则的最大值为( )A、 B、1 C、 D、8. 已知公差为的等差数列 , 为其前项和,若 , 则( )A、 , B、 , C、 , D、 ,二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.
-
9. 设平面向量 , , ( )A、若 , 则 B、若 , 则 C、 , D、 , 使10. 已知函数的图象经过点与 , 则( )A、是的最大值 B、是的最小值 C、 D、在单调递增11. 已知函数 , . ( )A、若 , 则 B、若 , 则 C、对于 , 若 , 则 D、对于 , 若 , 则12. 已知抛物线的焦点为 , 准线为 , 点 , 在上(在第一象限),点在上, , , ( )A、若 , 则 B、若 , 则 C、则的面积最小值为 D、则的面积大于
三、填空题:本题共4小题,每小题5分,共20分.
-
13. 双曲线的渐近线方程为 .14. 已知一圆锥的侧面展开图是圆心角为且半径为1的扇形,则该圆锥的侧面积为 .15. 某地区上年度电价为0.8元 , 年用电量为 , 本年度计划将电价下降到之间,而用户期望电价为 . 经测算下调电价后的新增用电量,和实际电价与用户的期望电价的差成反比(比例系数为).该地区的电力成本价为 . 已知 , 为保证电力部门的收益比上年至少增长 , 则最低的电价可定为 .16. 直三棱柱中, , , , 分别是棱 , 上一点,且 , 若三棱锥的外接球与三棱锥的外接球外切,则的长为 .
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
17. 浙江省普通高中学业水平考试分五个等级,剔除等级,等级的比例分别是 , 现从当年全省数学学考四个等级的考生试卷中按分层抽样的方法随机抽取20份试卷作为样本分析答题情况.(1)、分别求样本中A,B,C,D各等级的试卷份数;(2)、从样本中用简单随机抽样的方法(不放回)抽取4份试卷,记事件为抽取的4份试卷中没有等级的试卷,事件为抽取的4份试卷中有等级的试卷,求 .18. 记的内角 , , 的对边分别为 , , , 已知 , .(1)、求角;(2)、求 .19. 如图在等腰梯形中, , , , , , 分别为 , , 的中点,现将绕翻折至的位置,为的中点.(1)、求证:平面;(2)、当平面垂直于平面时,求平面与平面夹角的余弦值.