【培优卷】湘教版(2024)七年级上册第一章 有理数 单元测试

试卷更新日期:2024-09-01 类型:单元试卷

一、选择题(每题3分,共30分)

  • 1. 在数轴上点P表示的一个数是2 , 将点P移动4个单位后所得的点A表示的数是(    )
    A、2或6 B、6或6 C、6 D、2
  • 2. 有理数ab在数轴上对应点的位置如图所示,下列说法中正确的是(    )

    A、a>b B、a>b C、|a|>|b| D、a+b>0
  • 3. 如图,加工一种轴时,轴直径在299.5毫米到300.2毫米之间的产品都是合格品,在图纸上通常用φ3000.5+0.2来表示这种轴的加工要求,这里φ300表示直径是300毫米,+0.2表示最大限度可以比300毫米多0.2毫米,﹣0.5表示最大限度可以比300毫米少0.5毫米.现加工四根轴,轴直径的加工要求都是φ500.02+0.03 , 下列数据是加工成的轴直径,其中不合格的是(   )

    A、50.02 B、50.01 C、49.99 D、49.88
  • 4. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为(  )

    A、0.15×109千米 B、1.5×108千米 C、15×107千米 D、1.5×107千米
  • 5. 如果实数a、b满足ab<0且a+b>0.则实数a、b的符号为(    )
    A、a>0b>0 B、a<0b<0a的绝对值大于b的绝对值 C、a>0b<0a的绝对值大于b的绝对值 D、a<0b>0a的绝对值大于b的绝对值
  • 6. 已知a,b,c是有理数,当 a+b+c=0abc<0 时,求 |a|b+c+|b|a+c|c|a+b 的值为(   )
    A、1或-3 B、1,-1或-3 C、-1或3 D、1,-1,3或-3
  • 7.

    如图是一个数值运算的程序,若输出的y值为3,则输入的x值为(  )

    A、3.5 B、-3.5 C、7 D、-7
  • 8. 计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:

    十六进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    A

    B

    C

    D

    E

    F

    十进制

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    例如,用十六进制表示:C+F=1B,19﹣F=A,18÷4=6,则A×B=(  )

    A、72 B、6E C、5F D、B0

二、填空题(每题3分,共18分)

  • 9. 在有理数中,既不是正数也不是负数的数是  .

  • 10. 一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度,到达的终点表示的数是 

  • 11. 已知ab为有理数,下列说法中正确的是.

    ①若ab互为相反数,则ab=1

    ②若|a|=|b| , 则a=b

    ③若数轴上表示数ab的点到原点的距离相等,则|a|=|b|

    |a|>|b| , 且a大于其相反数,则a>b

三、解答应(共9题,共72分)

  • 12. 计算:
    (1)、(56)×(4738+114)
    (2)、2×(3)25÷(12)×(2)
    (3)、有个填写运算符号的游戏:在“ 1269 ”中的每个口内,填入 +,,×,÷ 中的某一个(可重复使用),然后计算结果

    ①算: 1+269 .

    1÷2×69=6 ,请在 内直接填出运算符号.

    ③“ 1269 ”中的口内填入符号后,使计算所得数最小,请在口内直接填出运算符号.

  • 13. 学习有理数的乘法后,老师给同学们这样一道题目:计算492425×(5) , 看谁算的又快又对,有两位同学的解法如下:

    聪聪:原式=124925×5=12495=24945

    明明:原式=(49+2425)×(5)49×(5)+2425×(5)=24945

    (1)、对于以上两种解法,你认为谁的解法更简便?
    (2)、睿睿认为还有一种更好的方法,请你仔细思考,把它写出来.
    (3)、用你认为最合适的方法计算:361516×(8)
  • 14. 把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,

    (1)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;

    (2)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.

  • 15. 请你参加计算游戏:
    (1)、“算24点”游戏:有四个数3,4,1,7,可以按下面方式计算:3×7-(1-4)=24,4×(7-1)= 24.利用加、减、乘、除、乘方运算(可用括号),每个数必须用一次且只能用一次,最终计算结果为24.下面有四个数: 1,-2,6,-8,请列出一个符合要求的算式,并写出计算全过程;
    (2)、请在□内填上×,÷中的一个,使计算更加简便,然后计算.

    计算:(134+78712)(78)

    (1号+号-台)(-部)

  • 16. 世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+102+56+129+414 . (假定开始计时时,守门员正好在球门线上)
    (1)、守门员最后是否回到球门线上?
    (2)、守门员离开球门线的最远距离达多少米?
    (3)、如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?
  • 17. 旅顺大樱桃以其果大,色好、口感佳而出名.每年6月份是樱桃采摘旺季.某樱桃农场安排5位员工进行樱桃采摘工作.规定:采摘数据以100kg为标准,超出部分记作正数,不足部分记作负数,下表是5位员工某一天采摘樱桃的实际情况.(+表示超出,-表示不足) 

    员工

    员工1

    员工2

    员工3

    员工4

    员工5

    采摘总量(kg

    +15

    12

    +21

    +18

    20

    (1)、员工2采摘樱桃是 kg;
    (2)、该农场预计采摘樱桃500kg , 通过计算说明5位员工樱桃采摘实际数量是否能够达到预计数量;
    (3)、该农场支付给员工的日结工资包含基本工资和个人绩效两部分,若按如下方法计算,农场该天共需支付给员工的工资是多少元?

    基本工资

    参加采摘的员工每人基本工资200元/天

    个人绩效

    若每天没达到100kg标准数量,少1kg扣2元;若每天超出100kg标准数量,多1kg奖助3元.

  • 18. 我们知道|4|=|40| , 它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73| , 它的几何意义是数轴上表示7的点与表示3的点之间的距离.也就是说,在数轴上,如果点A表示的数记为a , 点B表示的数记为bAB两点间的距离就可记作|ab|

    回答下列问题:

    (1)、数轴上表示4和2的两点之间的距离是
    (2)、小明在草稿纸上画了一条数轴,并折叠数轴,表示2的点与表示4的点重合.如果MNMN的左侧)两点之间的距离为2024,且MN两点经过上述折叠后重合,则MN表示的数分别是多少?
    (3)、如图,在数轴上剪下6个单位长度(从1至5)的一条线段,并把这条线段沿某点向左折叠,然后在重叠部分的某处剪一刀得到三条线段,发现这三条线段的长度之比为112 , 则折痕处对应的点表示的数可能是多少?
  • 19. 阅读下列材料并解决有关问题:我们知道|x|={x0x(x>0)(x=0)(x<0) , 所以当x>0时,x|x|=xx=1;当x<0时,x|x|=xx=1 , 现在我们可以用这个结论来解决下面问题:
    (1)、已知ab是有理数,当ab0时,求a|a|+b|b|的值;
    (2)、已知abc是有理数,当abc0 , 求a|a|+b|b|+c|c|的值;
    (3)、已知abc是有理数,a+b+c=0abc<0 , 求b+c|a|+a+c|b|+a+b|c|的值.