浙教版数学九上章末重难点专训 二次函数的图象与字母系数之间的关系(选填)

试卷更新日期:2024-07-24 类型:单元试卷

一、选择题

  • 1. 如图是二次函数 y=ax2+bx+c图象的一部分,其对称轴为. x=1且过点(3,0)有下列说法:①abc<0;②2a-b=0;③4a+2b+c<0;④若(5,y1),(52,y2)是抛物线上两点,则y1>y2.其中说法正确的是(  )

    A、①② B、②③ C、①②④ D、②③④
  • 2. 函数y=|ax2+bx+c|(a>0,b2-4ac>0)的图象是由函数y=ax2+bx+c(a>0,b2-4ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论:①2a+b=0;②c=3;③abc>0;④将图象向上平移1个单位长度后与直线y=5有3个交点.其中正确的是(   )

    A、①② B、①③ C、②③④ D、①③④
  • 3. 如图,抛物线y=ax2+bx+cx轴交于AB两点,与y轴交于点C(0,1) , 点A(40)(30)之间(不包含这两点),抛物线的顶点为D , 对称轴是直线x=2 . 有下列结论:①abc<0;②若点M(32,y1)N(83,y2)是抛物线上两点,则y1>y2;③a>13;④若a=1 , 则ABD是等边三角形.其中正确的个数是( )

    A、1 B、2 C、3 D、4
  • 4. 抛物线y=ax2+bx+cx轴于A(10)B(30) , 交y轴的负半轴于C , 顶点为D . 下列结论:①abc>0;②2c<3b;③当m1时,a+b>am2+bm;④当ABD是等腰直角三角形时,则a=12;⑤若x1x2是一元二次方程a(x+1)(x3)=4的两个根,且x1<x2 , 则x1<1<x2<3 . 其中正确的有( )个

      

    A、2 B、3 C、4 D、5
  • 5. 已知二次函数y=ax2+bx+c的图象如图所示,顶点为(﹣1,0),则下列结论:

    abc<0;②b24ac=0;③2ab=0;④a>2;⑤4a2b+c<0

    其中正确结论的个数是(  )

    A、2个 B、3个 C、4个 D、5个
  • 6. 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:

    ①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0④当y>0时,x的取值范围是-1≤x<3⑤当x<0时,y随x增大而增大

    其中结论正确的个数是(  )

    A、4个 B、3个 C、2个 D、1个
  • 7. 抛物线y=ax2+bx+c的对称轴是直线x=1 , 且过点(10) , 顶点位于第二象限,其部分图象如图所示,给出以下判断:(1)4a2b+c<0;(2)8a+c=0;(3)c=3a3b;(4)直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1x2 , 则x1+x2+x1x2=5 , 其中正确的有( )

    A、4个 B、3个 C、2个 D、1个
  • 8. 函数y=|ax2+bx+c|(a>0b24ac>0)的图象是由函数y=ax2+bx+c(a>0b24ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是(    )

    2a+b=0 ;②c=3;③abc>0;④将图象向上平移1个单位后与直线y=5有3个交点.

    A、①② B、①③ C、②③④ D、①③④
  • 9. 二次函数yax2+bx+ca≠0)的图象如图所示,对称轴是直线x=1,下列结论:①abc<0;②方程:ax2+bx+c=0(3≠0)必有一个根大于2且小于3;③若(0,y1)32y2)是抛物线上的两点,那么y1y2;④11a+2c>0;⑤对于任意实数m , 都有mam+b)≥a+b , 其中正确结论的是(  )

    A、②④ B、①②④ C、②④⑤ D、②③④
  • 10.  如图,抛物线y=ax2+bx+cx轴交于AB两点,与y轴交于点C , 且OA=OCM是抛物线的顶点,三角形AMB的面积等于1,则以下结论:①b24ac4a<0;②acb+1=0;③(2b)3=8a2;④OAOB=ca , 其中正确的结论是(    )

    A、②④ B、①②④ C、①③④ D、①②③④
  • 11. 如图是二次函数y=ax2+bx+cabc是常数,a0)图象的一部分,与x轴的交点在点(2,0)(3,0)之间,对称轴是x=1 . 对于下列说法:①ab<0;②2ab=0;③当1<x<3时,y>0;④8a+c<0 . 其中正确的个数是(    )

    A、1个 B、2个 C、3个 D、4个
  • 12. 如图,二次函数y=ax2+bx+c的图象经过点(30) , 对称轴为直线x=1 , 下列结论:(1)abc>0;(2)9a-3b+c=0;(3)3b+2c=0;(4)若Aa+1y1Ba+2y2两点在该二次函数的图象上,则y1-y2<0 . 其中正确的有( )

    A、1个 B、2个 C、3个 D、4个
  • 13.  如图,抛物线y=ax2+bx+c的对称轴为x=-1,且过点(120, , 有下列结论:①abc>0; ②a-2b+4c>0; ③25a-10b+4c=0; ④3b+2c>0;其中正确的结论的个数是(  )

    A、1 B、2 C、3 D、4
  • 14. 如图,抛物线y=ax2+bx+c经过点A(-1,0),B(m,0),且1<m<2,有下列结论:①b<0;②a+b>0;③0<a<-c;④若点C(-23 , y1),D(53 , y2)在抛物线上,则y1>y2其中,正确的结论有( )个

    A、4 B、3 C、2 D、1
  • 15.  函数y=|ax2+bx+c|(a>0b24ac>0)的图象是由函数y=ax2+bx+c(a>0b24ac>0)的图象x轴上方部分不变,下方部分沿x轴向上翻折而成,如图所示,则下列结论正确的是(     )

    2a+b=0;②c=3;③abc0;④将图象向上平移2个单位后与直线y=5有3个交点.

    A、①② B、①③④ C、②③④ D、①③

二、填空题

  • 16. 已知二次函数y=ax2+bx+c=0(a0)图象如图所示,有下列4个结论:①abc0;②9a+3b+c=0;③b24ac;④2c<3b;其中正确的结论

  • 17. 二次函数y=ax²+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc﹤0;②3a+c﹥0;③(a+c)2-b2﹤0;④a+b≤m(am+b)(m为实数).其中正确的结论有.

  • 18. 如图是二次函数y=ax2+bx+c的图象,下列结论:

    ①二次三项式ax2+bx+c的最大值为4;

    ②4a+2bc<0;

    ③一元二次方程ax2+bx+c=1的两根之和为-1;

    ④使y≤3成立的x的取值范围是x≥0.

    其中正确的有(填序号).

  • 19. 如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(-1,0) , 与y轴的交点B(0,-2)(0,-1)之间(不包括这两点) , 对称轴为直线x=1.下列结论:abc>04a+2b+c>04ac-b2<-4a13<a<1b>c.其中正确结论有(填写所有正确结论的序号)

  • 20. 如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于AB两点,与y轴交于C点,且对称轴为x=1 , 点B坐标为(-1,0).则下面的四个结论:2a+b=04a-2b+c<0abc>0y<0时,x<-1x>2.其中正确的是

  • 21. 已知抛物线y=ax2+bx+cabc为常数,a0)的对称轴是直线x=1 , 其部分图象如图,则以下四个结论中:①abc>0;②2a+b=0;③3a+c<0;④4a+b2>4ac . 其中,正确结论的序号是

  • 22. 二次函数y=ax2+bx+c的部分图象如图所示,对称轴为x=1 , 图象过点A , 且9a+3b+c=0 , 以下结论:①4a2b+c<0;②关于x的不等式ax2+2axc>0的解集为:1<x<3;③c>3a;④(m21)a+(m1)b0m为任意实数);⑤若点B(my1)C(2my2)在此函数图象上,则y1=y2.其中错误的结论是.