新疆维吾尔自治区乌鲁木齐市米东区2024年中考数学一模模拟试题

试卷更新日期:2024-05-20 类型:中考模拟

一、选择题(本大题共9小题,每小题4分,共36分.)

  • 1.  2025的相反数是(    )
    A、2025 B、12025 C、2025 D、12025
  • 2.  如图是由6个相同的正方体组合而成的几何体,其左视图是(    )

    A、 B、 C、 D、
  • 3.  下列说法:①平方等于本身的数只有1;②若ab互为相反数,且ab0 , 则ab=1;③若|a|=a , 则(a)3的值为负数;④如果a+b+c=0 , 且|a|>|b|>|c| , 那么ac<0;⑤2x2+3x3=5x5;⑥多项式2x2y3+2xy1是三次三项式;正确的个数为(    )
    A、3个 B、4个 C、5个 D、6个
  • 4. 尼莫点,正式名称为海洋难抵极,是地球表面距离陆地最偏远的地点,位于南太平洋中央的海面上,最近的陆地与当地相隔2688000米之遥,其中2688000用科学记数法表示应为(    )
    A、2.688×107 B、26.88×105 C、2.688×106 D、0.2688×107
  • 5. 如图,四边形ABCD是梯形, ADBCDABABC 的角平分线交于点E, CDABCD 的角平分线交于点F,则 12 的大小关系为(   )

    A、1>2 B、1=2 C、1<2 D、无法确定
  • 6.  如图,点OABC的外接圆的圆心,若A=80° , 则BOC为(    )

    A、100° B、160° C、150° D、130°
  • 7. 《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,则可列二元一次方程组为(   )

    A、{x+y=250x+10y=30 B、{x-y=250x+10y=30 C、{x+y=210x+50y=30 D、{x+y=210x+30y=50
  • 8. 如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为(     )

    A、332 cm B、4cm C、32 cm D、6cm
  • 9.  二次函数y=ax2+3ax+c(a>0,c>0)与动直线y=ax+b交于MN两点,线段MN中点为HA(1,0)B(0,2) , 则AH+BH的最小值为(    )
    A、5 B、23 C、13 D、14

二、填空题(本大题共6小题,每小题4分,共24分)

  • 10. 函数y=3x4中自变量x的取值范围是
  • 11. 一个六边形的六个内角都是120°,连续四边的长依次为2.31,2.32,2.33,2.31,则这个六边形的周长为
  • 12.  某校初中女子篮球队共有11名队员,她们的年龄情况如下,则该篮球队队员年龄的中位数是岁.

    年龄/岁

    12

    13

    14

    15

    人数

    1

    3

    3

    4

  • 13.  某个圆锥的侧面展开图是一个半径为6cm , 圆心角为120°的扇形,则这个圆锥的底面半径为cm.
  • 14.  如图,正六边形ABCDEF的中心为原点O , 顶点ADx轴上,且半径为2 , 则点C和点E的坐标分别为

  • 15.  如图所示,二次函数y=ax2bxc(a0)的图像的对称轴是直线x=1 , 且经过点0,2 . 有下列结论:①abc>0;②b24ac>0;③a+bm(am+b)m为常数);④x=3x=5时函数值相等;⑤若(2,y1)(12,y2)(2,y3)在该函数图象上,则y3<y2<y1;⑥8a+c<0 . 其中错误的结论是(填序号).

三、解答题(本大题共8小题,共90分.解答应写出文字说明,证明过程或演算步)

  • 16. 先化简 x22x+1x21÷(x1x+1x+1) ,然后从 6<x<6 的范围内选取一个你喜欢的合适的整数作为x的值代入求值.
  • 17.  先化简,再求值:(aa+22a+3a24+2a2)÷a1a2 , 其中a3-2
  • 18.  如图,在ABC中,ACB=90°AC=BCBECE于点EADCE于点D . 求证:

    (1)、CDABEC
    (2)、BE=ADDE
  • 19. 新颁布的《义务教育课程方案和课程标准(2022年版)》优化了课程设置,将劳动从综合实践活动课程中独立出来,彰显劳动教育的重要性.为了解某校学生一周内劳动教育情况,随机抽查部分学生一周内课外劳动时间,将数据进行整理并制成如下统计图的图1和图2.

      

    请根据图中提供的信息,解答下面的问题:

    (1)、求图1中m的值为  , 此次抽查数据的中位数是 h
    (2)、求该校此次抽查的学生一周内平均课外劳动时间;
    (3)、若该校共有2000名学生,请你估计该校学生一周内课外劳动时间不小于3h的人数.
  • 20.  如图,某大楼的顶部竖有一块广告牌CD , 小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:3AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,参考数据:tan53°≈43 , cos53°≈0.60)

  • 21. 某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价80元.厂方在开展促销活动期间,向客户提供两种优惠方案:

    方案一:买一套西装赠送一条领带;

    方案二:西装和领带都按定价的90%付款.

    现某客户要到该服装厂购买西装20套,领带x条(x>20).

    (1)、①若该用户按方案一购买,需付款元(用含x的式子表示);

    ②若该用户按方案二购买,需付款元(用含x的式子表示);

    (2)、①若x=30,通过计算说明此时按哪种方案购买比较合算?

    ②若两种购买方案付款相同,求出x的值.

  • 22.  如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,点C在OP上,满足∠CBP=∠ADB.

    (1)、求证:BC是⊙O的切线;
    (2)、若OA=2,AB=1,求线段BP的长.
  • 23.  
    (1)、探究1如下图,在菱形ABCD中,AB=8ABC=60°P点为射线BC上一动点,DEAPE , 连接BEPD . 当PD=AD时,BE= 

    (2)、探究2

    如下图,在矩形ABCD中,AB=8BC=10P为射线BC上一点,DEAPE , 连接BEPD . 当PD=AD时,BE= 

    (3)、拓展探究:

    如下图,在ABCD中,AB=6BC=8ABC=60°P点为射线BC上一点,DEAPE , 连接BEPD . (数据:376)

    ①若BEPD , 则SADE        ▲     SPCD;(填“>”或“=”或“<”)

    ②若PD=AD , 求BE的长.