2024年江苏省常州市中考数学仿真模拟卷

试卷更新日期:2024-05-09 类型:中考模拟

一、单选题(每题2分,共16分)

  • 1. 下列运算中,计算正确的是(   )
    A、a3a2=a6 B、a8÷a2=a4 C、(ab2)2=a5 D、(a2)3=a6
  • 2. 若分式 x21x+1 的值为0,则x应满足的条件是(   )
    A、x=1 B、x1 C、x±1 D、x=1
  • 3. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为(    )

     

    A、 B、 C、 D、  
  • 4. 617 的相反数是(  )
    A、617 B、176 C、617 D、176
  • 5. 今年五月份香港举办“保普选反暴力”大联盟大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为(   )

    A、1.21×106 B、12.1×105 C、0.121×107 D、1.21×105
  • 6. 若点 A(1m2) 与点 B(1n) 关于 y 轴对称,则 m+n=   
    A、2 B、0 C、-2 D、-4
  • 7. 如图,已知点E、F分别是△ABC的边AB、AC上的点,且EF∥BC,点D是BC边上的点,AD与EF交于点H,则下列结论中,错误的是( )

    A、AEAB=AHAD      B、AEAB=EHHF      C、AEAB=EFBC      D、AEAB=HFCD
  • 8. 小明同学利用计算机软件绘制了某一函数的图象,如图所示.由学习函数的经验,可以推断这个函数可能是(  )

    A、y=3x(x+2)2 B、y=3x(x1)2 C、y=3x(x+1)2 D、y=3(x+1)(x+2)2

二、填空题(每题2分,共20分)

  • 9. 当 x=3 时,二次根式 x+1 的值是.
  • 10. 分解因式: ax216ay2= .
  • 11. 计算:| 83 ﹣4|﹣( 122=
  • 12. 一货轮从甲港往乙港运送货物,甲港的装货速度是每小时30吨,一共装了8小时,到达乙港后开始卸货,乙港卸货的速度是每小时x吨,设卸货的时间是y小时,则y与x之间的函数关系式是 (不必写自变量取值范围).
  • 13. 下图中的四边形均为矩形,根据图形的面积关系,写出一个正确的等式:

  • 14. 小华在如图所示的4×4正方形网格纸板上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是

    (第10题图)

  • 15. 如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC= 233 ,CD=3,则AC=

  • 16. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为  .

  • 17. 如图,我国古代建造的闻名中外的赵州石拱桥,若桥拱圆弧的半径长为r , 拱高为h , 则桥跨度d(用含rh的代数式表示)

  • 18. 在矩形 ABCD 中, AB=4AD=6FBC 边上的一个动点,连接 AF ,过点 BBEAF 与点 G ,交射线 CD 于点 E ,连接 CG ,则 CG 的最小值是

三、解答题(共10题,共84分)

  • 19. 已知x2+x1=0 , 求12(2x+1)2x(x+1)的值.
  • 20. 解不等式组: {x3(x2)8x1<x+13
  • 21. 某校组织学生参加“防疫卫生知识竞赛”(满分为100).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.

    a.甲、乙两班各40名学生数学成绩的频数分布统计表如下:

    成绩

    班级

    50x<60

    60x<70

    70x<80

    80x<90

    90x100

    4

    11

    13

    10

    2

    6

    3

    15

    14

    2

    (说明:成绩80分及以上为优秀,7079分为良好,6069分为合格,60分以下为不合格)

    b.甲班成绩在70x<80这一组的是:

    70707071727373737475767778

    c.甲、乙两班成绩的平均分、中位数、众数如下:

    班级

    平均分

    中位数

    众数

    74.2

    n

    85

    73.5

    76

    84

    根据以上信息,回答下列问题:

    (1)、写出表中n的值为
    (2)、在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填“甲”或“乙”) , 理由是
    (3)、假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.
  • 22. 如图是四张不透明的卡片.除正面分别有数字1、1、2、3 外.其他均相间.将这四张卡肯面朝上洗匀后放置在桌面上.

    (1)、小明从中随机抽取一张卡片,恰好得到数字1的概率是
    (2)、小明和小丽恕用这四张卡片做游戏,游戏规则为小明先随机抽取一张卡片,小丽再从余下的卡片中随机抽取一张.如朵两张卡片上的数字和为奇数,小明胜;和为偶数,小丽胜.你认为这个游戏公平吗?请用列表或画树状图的方法说明理由.
  • 23. 在菱形ABCD中,EF分别为ADAB上的点,且AE=AF , 连接并延长EF , 与CB的延长线交于点G , 连接BD

    (1)、如图1,求证:四边形EGBD是平行四边形;
    (2)、如图2,连接AG , 若GB=AE , 请直接写出长为线段FB长2倍的线段.
  • 24. 园林部门计划在公园建一个如图(甲)所示的长方形花圃ABCD , 花圃的一面靠墙(墙足够长),另外三边用木栏围成,BC=2AB , 建成后所用木栏总长120米,在图(甲)总面积不变的情况下,在花圃内部设计了一个如图(乙)所示的正方形网红打卡点和两条宽度相等的小路,其中,小路的宽度是正方形网红打卡点边长的14 , 其余部分种植花卉,花卉种植的面积为1728平方米.

    (1)、求长方形ABCD花圃的长和宽;
    (2)、求出网红打卡点的面积.
  • 25. 如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数 y=mx(m0) 的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE= 45

    (1)、求该反比例函数和一次函数的解析式;
    (2)、求△AOC的面积;
    (3)、直接写出一次函数值大于反比例函数值时自变量x的取值范围.
  • 26. 【温故知新】在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,小明结合图1给出如下证明思路:作CFADDE的延长线于点F , 再证ADECFE , 再证四边形DBCF是平行四边形,即可证明定理。

    图1            图2        图3        图4

    (1)、【新知体验】小明思考后发现:作平行线可以构成全等三角形或平行四边形,以达到解决问题的目的.如图2,在四边形ABCD中,ADBCACBD , 若AC=3BD=4AD=1 , 则BC的值为
    (2)、【灵活运用】如图3,在矩形ABCDABEF中,连接DFAE交于点G , 连接DB。若AE=DF=DB , 求FGE的度数;
    (3)、【拓展延伸】如图4在第(2)题的条件下,连接BF , 若AB=AD=42 , 求BEF的面积
  • 27.

    如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,抛物线y=x2的顶点在直线AO上运动,与直线x=2交于点P,设平移后的抛物线顶点M的横坐标为m.

    (1)如图1,若m=﹣1,求点P的坐标;

    (2)在抛物线平移的过程中,当△PMA是等腰三角形时,求m的值;

    (3)如图2,当线段BP最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

     

  • 28.    

    (1)、【证明体验】

    如图1,⊙O是等腰△ABC的外接圆,ABAC , 在AC^上取一点P , 连结APBPCP . 求证:∠APB=∠PAC+∠PCA

    (2)、【思考探究】

    如图2,在(1)条件下,若点PAC^的中点,AB=6,PB=5,求PA的值;

    (3)、【拓展延伸】

    如图3,⊙O的半径为5,弦BC=6,弦CP=5,延长APBC的延长线于点E , 且∠ABP=∠E , 求APPE的值.