2024年中考数学热点探究九 特殊三角形中的分类讨论、存在性问题
试卷更新日期:2024-04-27 类型:二轮复习
一、选择题(每题2分,共18分)
-
1. 若等腰三角形的周长为10cm,其中一边长为2cm,则该等腰三角形的底边长为( )A、2cm B、4cm C、6cm D、8cm2. 在△ABC和中,.已知 , 则( )A、 B、 C、或 D、或3. 已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程.的两个根,则k的值为( )A、7 B、7或6 C、6或-7 D、64. 如图,在平面直角坐标系中,等边的顶点 , , 已知与位似,位似中心是原点O,且的面积是面积的16倍,则点A对应点的坐标为( )A、 B、或 C、 D、或5. 已知直线y=-x+1与x轴、y轴分别交于A,B两点,点P是第一象限内的点.若△PAB为等腰直角三角形,则点P的坐标为( )A、(1,1) B、(1,1)或(1,2) C、(1,1)或(1,2)或(2,1) D、(0,0)或(1,1)或(1,2)或(2,1)6. 已知等腰△ABC , AD为BC边上的高,且则等腰△ABC的底角的度数为( )A、45° B、75°或60° C、45°或75° D、以上都不对7. 如图,BD是的对角线,BD⊥AD,AB=2AD=6,点E是CD的中点,点F、P分别是线段AB、BD上的动点,若△ABD∽△PBF,且△PDE是等腰三角形,则PF的长为( )A、或 B、或 C、或 D、或8. 如图,在矩形 中, 点 是 的中点,点 在 上,且 若在此矩形上存在一点 ,使得 是等腰三角形,则点 的个数是( )A、 B、 C、 D、9. 如图,在矩形ABCD中, , 点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN 是等腰三角形且底角与∠DEC相等,则MN的值为( )A、6或2 B、3或 C、2或3 D、6或
二、填空题(每题2分,共18分)
-
10. 一个等腰三角形的顶角为140°,则它一腰上的高与另一腰的夹角为 .11. 如图,在 中, ,D是 上一点(点D与点A不重合).若在 的直角边上存在4个不同的点分别和点A、D成为直角三角形的三个顶点,则 长的取值范围是.12. 在△ABC中, , , 点D是边上一动点,将△ACD沿直线翻折,使点A落在点E处,连接交于点F(所给图形仅仅是示意图).当△DEF是直角三角形时, .13. 如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC相切于点A.D是BC边上的动点,当△ACD为直角三角形时,AD的长为14. 定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.如图,在平面直角坐标系xOy中,矩形OABC的边OA=3,OC=4,点M(2,0),在边AB存在点P , 使得△CMP为“智慧三角形”,则点P的坐标为: .15. 平面直角坐标系中,直线分别与函数的图象交于、 , 若轴负半轴上存在点使得是以为直角顶点的等腰直角三角形,则为 .16. 已知,一次函数与反比例函数的图象交于点A、B,在x轴上存在点P(n,0),使△ABP为直角三角形,则P点的坐标是 .17. 如图,在等边三角形ABC中,D是AC的中点,P是边AB上的一个动点,过点P作PE⊥AB,交BC于点E,连接DP,DE.若AB=8,△PDE是等腰三角形,则BP的长是.18. 如图,在Rt△ABC中,∠C=90°,记x=AC,y=BC-AC,在平面直角坐标系xOy中,定义(x,y)为这个直角三角形的坐标,Rt△ABC为点(x,y)对应的直角三角形.有下列结论:①在x轴正半轴上的任意点(x,y)对应的直角三角形均满足AB=BC;②在函数y=(x>0)的图象上存在两点P,Q,使得它们对应的直角三角形相似;③对于函数y=(x-2020)2-1(x>0)的图象上的任意一点P,都存在该函数图象上的另一点Q,使得这两个点对应的直角三角形相似;④在函数y=-2x+2020(x>0)的图象上存在无数对点P,Q(P与Q不重合),使得它们对应的直角三角形全等.所有正确结论的序号是 .
三、解答题(共8题,共84分)
-
19. 对于平面直角坐标系中的线段 , 给出如下定义:若存在使得 , 则称为线段的“等幂三角形”,点R称为线段的“等幂点”.(1)、已知 , 若存在等腰是线段的“等幂三角形”,求点B的坐标;(2)、已知点C的坐标为 , 点D在直线上,记图形M为以点为圆心,2为半径的位于x轴上方的部分.若图形M上存在点E,使得线段的“等幂三角形”为锐角三角形,直接写出点D的横坐标的取值范围.20. 如图,在中, , , 动点从点出发,沿以每秒个单位长度的速度向终点匀速运动.过点作的垂线交射线于点 , 当点不和点重合时,作点关于的对称点设点的运动时间为秒 .(1)、BC=;(2)、求的长.用含的代数式表示(3)、取的中点 .
连结、 , 当点在边上,且时,求的长.
连结 , 当时,直接写出的值.
21. 在中, , , .点在线段上运动,过点作的垂线交线段(如图1)或线段的延长线(如图2)于点 .图1 图2 备用图
(1)、当点在线段上时,求证:;(2)、当点与点重合时,求的长;(3)、若点从点以每秒2个单位长的速度向点运动,求点与点的距离不大于1的时长;(4)、当为等腰三角形时,直接写出的长.22. 如图,在直角梯形中, , ,动点P从点D出发,沿射线的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段上以每秒1个单位长的速度向点B运动,点P , Q分别从点D , C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)、设的面积为S , 求S与t之间的函数关系式;(2)、当t为何值时,四边形是平行四边形;(3)、当t为何值时,以B , P , Q三点为顶点的三角形是等腰三角形?23. 对于平面直角坐标系中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得为等腰直角三角形,且 , 则称点C为图形G的“友好点”.(1)、已知点 , , 在点 , , 中,线段OM的“友好点”是;(2)、直线分别交x轴、y轴于P,Q两点,若点为线段PQ的“友好点”,求b的取值范围;(3)、已知直线分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的的“友好点”,直接写出d的取值范围.24. 在平面直角坐标系 中,点 ,若射线 上存在点P,使得 是以 为腰的等腰三角形,就称点P为线段 关于射线 的等腰点.(1)、如图, ,①若 ,则线段 关于射线 的等腰点的坐标是 ▲ ;
②若 ,且线段 关于射线 的等腰点的纵坐标小于1,求n的取值范围;
(2)、若 ,且射线 上只存在一个线段 关于射线 的等腰点,求t的取值范围.25. 如图甲,在△ABC中,∠ACB=90°,AC=4,BC=3,动点P从点B出发,沿BA方向向点A匀速运动,同时动点Q从点A出发,沿AC方向向点C匀速运动,它们的速度均为1个单位/s,连接PQ . 设运动时间为t(s)(0<t<4),解答下列问题:(1)、设△APQ的面积为S , 则S=;(用含t的代数式表示)(2)、如图乙,连接PC , 将△PQC沿QC翻折,得到四边形PQP’C , 当四边形PQP’C为菱形时,求t的值;(3)、当△APQ是等腰三角形时,求t的值?26. 如图1, , 是半圆上的两点,若直径上存在一点 , 满足 , 则称是的“幸运角”.(1)、如图2,是的直径,弦 , 是上一点,连结交于点 , 连结 , 是的“幸运角”吗?请说明理由;(2)、设的度数为 , 请用含的式子表示的“幸运角”度数;(3)、在(1)的条件下,直径 , 的“幸运角”为.①如图3,连结 , 求弦的长;
②当时,求的长.