2024年浙教版数学八(下)微素养核心突破11 平行四边形的动点问题
试卷更新日期:2024-04-14 类型:复习试卷
一、选择题
-
1. 如图 ,在平行四边形中 , ,AB=4 ,AD=8 , 点H、G分别是边CD、上的动点.连接、 ,点E为的中点 ,点为的中点 ,连接.则的最大值与最小值的差为( )A、2 B、 C、 D、2. 如图, ▱ABCD的顶点A,D分别在直角∠MON的两边OM,ON上运 动(不与点O重合),▱ABCD的对角线AC,BD相交于点P,连接OP,若OP=5,则▱ABCD的周长最小值是( )A、20 B、25 C、10 D、153. 如图,平行四边形ABCD中,E,F分别是AD,BC的中点,P是边DC上的动点,G,H分别是PE,PF的中点,已知DC=10cm,则GH的长是( )A、7cm B、6cm C、5cm D、4cm4. 如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(4,2)、D(3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A',则A'C的最小值为( )A、 B、 C、 D、15. 如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为( )A、1 B、 C、 D、6. 如图,在Rt△ABC中,∠C=90°,AC=4,AB=8,点D是AC上一个动点,以AB为对角线的所有平行四边形ADBE中,线段DE的最小值是( )A、4 B、 C、 D、67. 将一副三角尺如图拼接:含30°角的三角尺()的长直角边与含45°角的三角尺()的斜边恰好重合.点E,F分别是边 , 上的动点,各自同时从点A,点B向终点C运动,已知点E的速度为1单位/秒,若存在某个时刻四边形为平行四边形,则点F的速度为( )单位/秒.A、1 B、 C、 D、28. 在平面直角坐标系中,平行四边形ABCD的坐标分别为A(-1,0)、B(0,2)、C(3,2)、D(2,0),点P是AD边上的一个动点,若点A关于BP的对称点为 ,则 C的最小值为( )A、 B、 C、 D、1
二、填空题
-
9. 如图,四边形ABCD 是平行四边形,点D 的纵坐标是6,CD=10,顶点A在y轴上,边 BC 在x轴上.设 P 是射线 BC上的一个动点,则当△ABP 为等腰三角形时,点P的坐标是.10. 如图,在平面直角坐标系中,O为坐标原点,四边形ABCD是平行四边形,点A,B,C的坐标分别为A(0,2),B(-1,0),C(4,0),E是 BC 的中点,P 是线段AD 上的动点.若△BEP是等腰三角形,则点P 的坐标为.
·
11. 如图四边形ABCD,AD∥BC,AB⊥BC,AD=3,AB=6,BC=9,P为AB边上的一动点,以PD,PC为边作平行四边形PCQD,则对角线PQ的长的最小值是 .12. 如图,△ABC中,AB=AC=10,BC=12,D为AC边上一动点,E为平面内一点,以点B、C、D、E为顶点的四边形为平行四边形,则DE的最小值为.13. 如图,点A,B为定点,定直线 ∥AB,P是 上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是.14. 如图,矩形 中, , ,连结对角线 ,E为 的中点,F为 边上的动点连结 ,作点C关于 的对称点 ,连结 , ,若 与 的重叠部分( )面积等于 的 ,则 .三、综合题
-
15. 如图,在ABCD中,点P是对角线AC上一动点,过点P作PM∥DC,且PM=DC,连结BM,CM,BP,PD.
(1)、求证:△ADP≌△BCM;(2)、若PA=PC,设△ABP的面积为S,四边形BPCM的面积为T,求的值.16.将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2 ,P是AC上的一个动点.
(1)、当点P运动到∠ABC的平分线上时,连接DP、BP,求CP、DP的长;(2)、当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;(3)、当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时平行四边形的面积.17. 点P是平行四边形的对角线所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线作垂线,垂足分别为点E、F.点O为的中点.(1)、如图1,当点P与点O重合时,线段和的关系是;(2)、当点P运动到如图2所示的位置时,请证明(1)中的结论仍然成立.(3)、如图3,点P在线段的延长线上运动,当时,试探究线段、、之间的关系.18. 如图1,在直角坐标系中,直线y=-2x+8交x轴于点B,交y轴于点A, C是AB的中点,动点P从点A出发沿AO方向以每秒1个单位的速度向终点O运动,同时动点Q从点O出发以每秒2个单位的速度沿射线OB方向运动.以CP,CQ为边构造 ▱ CPDQ,设点P运动的时间为t秒.(1)、写出点C的坐标和直线OC的解析式.点C的坐标是 , 直线OC的解析式是
(2)、如图2,当点Q运动到点B时,连结CD.求证: CD∥AP.(3)、连结OC.当点D落在△AOC的边上或各边所在的直线上时,求t的值.19. 如图 , 中, , , , 动点从点出发,沿方向以每秒4个单位的速度向终点运动,同时动点从点出发,以每秒1个单位的速度沿方向运动,当点到达点时,点也停止运动,以 , 为邻边作平行四边形 , , 分别交于点 , , 设点运动的时间为秒.(1)、 含的代数式表示;(2)、如图2,连接 , , , 当时,求的面积;(3)、如图3,连接 , , 点关于直线的对称点为点,若落在的内部不包括边界时,则的取值范围为.20. 如图,在平面直角坐标系中,点A,B的坐标分别是(﹣4,0),(0,8),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)、当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)、当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)、在线段PE上取点F,使PF=3,过点F作MN⊥PE,截取FM= ,FN=1,且点M,N分别在第一、四象限,在运动过程中,当点M,N中,有一点落在四边形ADEC的边上时,直接写出所有满足条件的t的值.21. 如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿线段DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点P运动到点A时,点Q随之停止运动.设运动的时间为t(秒).(1)、当t=2时,求△BPQ的面积;(2)、若四边形ABQP为平行四边形,求运动时间t.(3)、当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?22. 在平面直角坐标系xOy中,A,B点的坐标分别为(0,4),(-4,0),P点坐标为(0,m),点E是射线BO上的动点,满足BE=1.5OP,以PE,EO为邻边作 ▱ PEOQ.(1)、当m=2时,求出PE的长度;(2)、当m>0时,是否存在m的值,使得PEOQ的面积等于△ABO面积的 , 若存在求出m的值,若不存在,请说明理由;(3)、当点Q在第四象限时,点Q关于E点的对称点为Q',点Q'刚好落在直线AB上时,求m的值(直接写出答案).23. 如图直角坐标系中直线AB与x轴正半轴、y轴正半轴交于A,B两点,已知B(0,4),∠BAO=30°,P,Q分别是线段OB,AB上的两个动点,P从O出发以每秒3个单位长度的速度向终点B运动,Q从B出发以每秒8个单位长度的速度向终点A运动,两点同时出发,当其中一点到达终点时整个运动结束,设运动时间为t(秒).(1)、求线段AB的长,及点A的坐标;
(2)、t为何值时,△BPQ的面积为2 ;(3)、若C为OA的中点,连接QC,QP,以QC,QP为邻边作平行四边形PQCD,①t为何值时,点D恰好落在坐标轴上;
②是否存在时间t使x轴恰好将平行四边形PQCD的面积分成1:3的两部分,若存在,直接写出t的值.