2023-2024学年冀教版初中数学八年级下册 22.3 三角形的中位线同步分层训练提升题

试卷更新日期:2024-04-02 类型:同步测试

一、选择题

  • 1. 如图,D,E分别是△ABC的边BA,BC的中点.若AC=3,则 DE 的长为 ( )

    A、2 B、43 C、3 D、32
  • 2. 如图,在△ABC中,E,D,F分别是AB,BC,CA 的中点,AB=6,AC=4,则四边形 AEDF 的周长为 ( )
    A、10 B、12 C、14 D、16
  • 3. 如图,□ABCD的周长为 36,对角线 AC,BD 相交于点O,E 是CD 的中点,连结OE.若 BD =12,则△DOE 的周长为 ( )
    A、15 B、18 C、21 D、24
  • 4. 如图,在RtABC中,ABC=90°C=67.5° , 点DAB上一点,点EAC的中点,连接DE . 若AED=A , 则DEBC的值为( )

     

    A、32 B、1 C、12 D、22
  • 5. 如图,在RtABC中,ABC=90°C=67.5° , 点DAB上一点,点EAC的中点,连接DE.若AED=A , 则DEBC的值为( )

    A、32 B、1 C、12 D、22
  • 6. 如图,在ABC中,按以下步骤作图:分别以点BC为圆心,大于12BC的长为半径画弧,两弧相交于EF两点,EFBC交于点O以点A为圆心,AC长为半径画弧,交AB于点D分别以点DC为圆心,大于12CD的长为半径画弧,两弧相交于点M , 连接AMAMCD交于点N , 连接ON.AB=9AC=5 , 则ON的长为( )

    A、2 B、52 C、4 D、92
  • 7. 如图,在RtABC中,ACB=90° , 点DEF分别是ABACBC的中点,若CD=10 , 则EF的长为( )

    A、10 B、8 C、6 D、4
  • 8. 如图,在RtABC中,ACB=90°DE分别是边ACAB的中点,DE=3CE=5 , 则AC=( )

    A、4 B、6 C、8 D、10

二、填空题

  • 9. 在△ABC中,AB=4,BC=6,AC=8,D,E,F分别为边AB,BC,AC的中点,则△DEF的周长为
  • 10. 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E 是 AC 的中点. 若 DE=8,则 AB 的长为.
  • 11. 如图,在△ABC中,M,N分别是AB 和AC 的中点,连结 MN,E 是CN 的中点,连结 ME 并延长,交 BC 的延长线于点 D.若 BC=4,则CD的长为.
  • 12. 如图,在RtABC中,C=90°AC=8BC=6DE分别为BCAC上的中点,连接ADBE , 分别取ADBEAB的中点MNP , 顺次连接MNP , 则MNP的周长为

     

  • 13. 成都大运会主火炬塔位于东安湖体育公园,如图,小明想测量东安湖AB两点间的距离,他在东安湖的一侧选取一点O , 分别取OAOB的中点MN , 但MN之间被障碍物遮挡,故无法测量线段MN的长,于是小明在AOBO延长线上分别选取PQ两点,且满足OP=ONOQ=OM , 小明测得线段PQ=90米,则AB两点间的距离是米.

三、解答题

  • 14. 如图,在△ABC中,AB=AC,D,E分别为边AB,AC的中点,连结DE,BE,F,G,H分别为BE,DE,BC的中点,连结FG,FH.

    (1)、求证:FG=FH,
    (2)、若∠A=90°,求证:FG⊥FH.
    (3)、若∠A=80°,求∠GFH的度数.
  • 15. 如图,在△ABC中,D 是边 BC 上一点,E,F,G,H分别是 BD,BC,AC,AD的中点,连结EG,HF.求证:EG,HF 互相平分.

四、综合题

  • 16. 如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.

    (1)、求证:BM=MN;
    (2)、∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
  • 17. 在RtABC中,BAC=90° , E、F分别是BCAC的中点,延长BA到点D,使AB=2AD , 连接DEDFAEAFDE交于点O.

    (1)、试说明AFDE互相平分;
    (2)、若AB=8BC=12 , 求DO的长.