2023-2024学年冀教版初中数学八年级下册 21.4 一次函数的应用同步分层训练基础题
试卷更新日期:2024-04-02 类型:同步测试
一、选择题
-
1. 一支签字笔的单价为2.5元,小涵同学拿了100元钱去购买了支该型号的签字笔,写出所剩余的钱与间的关系式是( )A、 B、 C、 D、2. 一种树苗的高度用h表示,树苗生长的年数用k表示,测得的有关数据如下表(树苗原高50cm),则用年数k表示高度h的公式是( )
年数k
1
2
3
4
……
高度h/cm
50+5
50+10
50+15
50+20
……
A、h=50k+5 B、h=50+5(k-1) C、h=50+5k D、h=50(k-1)+53. 甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1 , y2与x之间的函数图象如图所示,则下列说法中错误的是( )A、甲园的门票费用是60元 B、草莓优惠前的销售价格是40元/千克 C、乙园超过5千克后,超过的部分价格优惠是打五折 D、若顾客采摘15千克草莓,那么到甲园比到乙园采摘更实惠4. 甲无人机从地面起飞,乙无人机从距离地面20高的楼顶起飞,两架无人机同时匀速上升10s.甲、乙两架无人机所在的位置距离地面的高度y(单位:)与无人机上升的时间x(单位:s)之间的关系如图所示,时,两架无人机的高度差为( )A、10 B、15 C、20 D、255. 有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A、正比例函数关系 B、一次函数关系 C、二次函数关系 D、反比例函数关系6. 甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距千米;
②乙车比甲车晚出发小时,却早到小时;
③乙车出发后小时追上甲车;
④当甲、乙两车相距千米时,或
其中正确的结论有( )
A、个 B、个 C、个 D、个7. 2023年杭州亚运会竞赛项目中,有一个中华民族传统运动项目一一赛龙舟,此项比赛共分为六个小项目,中国健儿成绩骄人,共获得五金一银.在500米直道竞速赛道上,甲、乙两队所划行的路程y(单位:米)与时间t(单位:分)之间的函数关系如图所示,根据图中提供的信息,有下列说法:①甲队比乙队提前0.5分钟到达终点;②当划行1分钟时,甲队比乙队落后50米;③当划行分钟时,甲队追上乙队;④当甲队追上乙队时,两队划行的路程都是300米.其中错误的是( )A、① B、② C、③ D、④8. 某市政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,挖掘的管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米。②乙队开挖两天后,每天挖50米。③当时,甲、乙两队所挖管道长度相同。④甲队比乙队提前2天完成任务。正确的个数有( )
A、1个 B、2个 C、3个 D、4个二、填空题
-
9. 一次函数的图象经过点 , 但不过第一象限,请写出一个符合条件的函数关系式 .10. 某物体在力F的作用下,沿力的方向移动的距离为s,力对物体所做的功W与s的对应关系如图所示,则W与s之间的关系式是: .11. 声音在空气中传播的速度(简称声速)是空气温度的一次函数,若当空气温度为时,声速为;当空气温度为时,声速为 , 则声速y与温度t的函数关系式为 .12. 如图1,11月10日晚,“深爱万物”—2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演“天空之舞”,为人才喝彩、向人才致敬.如图2的平面直角坐标系中,线段分别表示1号、2号无人机在队形变换中飞行高度 , 与飞行时间的函数关系,其中 , 线段与相交于点P , 轴于点B , 点A的横坐标为25.则在第秒时1号和2号无人机在同一高度.13. 甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步 , 先到终点的人原地休息.已知甲先出发.在跑步过程中,甲、乙两人的距离与乙出发的时间之间的关系如图所示,给出以下结论:①;②;③.其中正确的是.
三、解答题
-
14. 一名生物学家在研究两种不同的物种A和B在同一生态环境中的资源消耗时发现:50个物种A和100个物种B共消耗了200单位资源;100个物种A和50个物种B共消耗了250单位资源.(1)、求1个物种A和1个物种B各消耗多少单位资源;(2)、已知物种A , B共有200个且A的数量不少于100个.设物种A有a个,物种A , B共消耗的单位资源W .
①求W与a的函数关系式;
②当物种A的数量为何值时,物种A、B共消耗的单位资源最少,最小值是多少?
15. 为了响应国家提倡的“节能环保”号召,某公司研发出一款新能源纯电动车,如图是这款电动车充满电后,蓄电池剩余电量(千瓦时)关于已行驶路程(千米)的函数图象.(1)、当时,1千瓦时的电量新能源纯电动车能行驶的路程为5千米,则;(2)、当时,求关于的函数表达式;(3)、请计算当新能源纯电动车已行驶160千米时,蓄电池的剩余电量.四、综合题
-
16. A,B两地距离24km,甲、乙两人同时从A地出发前往B地.甲先匀速慢走2h,而后匀速慢跑;乙始终保持匀速快走,设运动时间为x(单位:h).甲、乙距离A地的路程分别为 , (单位:km), , 分别与x的函数关系如图所示.(1)、求关于x的函数解析式;(2)、相遇前,是否存在甲、乙两人相距1km的时刻?若存在,求运动时间;若不存在,请说明理由.17. 兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家.哥哥步行先出发,途中速度保持不变:妹妹骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程s(米)与哥哥离开学校的时间t(分)的函数关系.
(1)、求哥哥步行的速度.(2)、已知妹妹比哥哥迟2分钟到书吧.
①求图中a的值;
②妹妹在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妹俩离家还有多远;若不能,说明理由.