2023-2024学年湘教版初中数学七年级下册 1.1 建立二元一次方程组同步分层训练提升题
试卷更新日期:2024-04-02 类型:同步测试
一、选择题
-
1. 金山银山不如绿水青山,某地准备购买一些松树苗和梭梭树苗绿化荒山,已知购买棵松树苗和棵梭梭树苗需要元,购买棵梭梭树苗比棵松树苗少花费元,设每棵松树苗元,每棵梭梭树苗元,则列出的方程组正确的是( )A、 B、 C、 D、2. 《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸:屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长水,长木还剩余1尺,问木长多少尺。设木长为x尺,绳子长为y尺,则下列符合题意的方程组是( )A、 B、 C、 D、3. 《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步。问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为( )A、 B、 C、 D、4. 如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A、10,4 B、4,10 C、3,10 D、10,35. 若方程2x-1=3y+2的解为则b的值为( )A、1 B、-1 C、3 D、-36. 已知是关于x,y的方程2x+ay=6的一个解,则 a的值为 ( )A、3 B、2 C、2 D、37. 如图,某个足球由32块黑白相间的牛皮缝制而成,黑皮可看作正五边形,白皮可以看作正六边形,黑、白皮的块数之比为3:5.设白皮有x块,黑皮有y 块,则根据题意,可列方程组( )A、 B、 C、 D、8. 若方程■是二元一次方程,■是被污染的x的系数,则推断■的值 ( )A、不可能是2 B、不可能是1 C、不可能是0 D、不可能是-1
二、填空题
-
9. 已知是二元一次方程的一个解,则a的值为 .10. 若方程是二元一次方程,则m= , n=.11. 我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x只,小鸡有y只,可列方程组为.12. 已知关于x , y的二元一次方程组的解为则关于x , y的方程组的解为.13. 已知方程x+2y=9.(1)、写出满足该方程的一对整数解:.(2)、写出满足该方程的所有自然数解:.
三、解答题
-
14. 在一次知识竞赛中,学校为获得一等奖和二等奖共30名学生购买奖品,共花费528元,其中一等奖奖品每件20元,二等奖奖品每件16元,求获得一等奖和二等奖的学生分别有多少名.根据题意列方程组.15. 如图,大长方形中无重叠地放置9个形状、大小都相同的小长方形,已知大长方形的长与宽的差为2,小长方形的周长为14,求图中空白部分的面积.
四、综合题
-
16. 对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数” .将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123) =6.(1)、计算:F(315),F(746);(2)、若s、t都是“相异数”,其中s=100x+42,t=160+y(1≤x≤9,1≤y≤9,x、y都是正整数),当F(s)+F(t)=17时,求x、y的值.17. 对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)、计算:F(243),F(617);(2)、若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.