人教版物理必修2同步练习:7.4 宇宙航行(基础巩固)
试卷更新日期:2024-03-28 类型:同步测试
一、选择题
-
1. 如图所示,在地面上发射一个飞行器,进入近地圆轨道Ⅰ并绕地球运行,其发射速度应满足A、 B、 C、 D、2. 嫦娥四号探测器在2019年发射升空,它是嫦娥探月工程计划中嫦娥系列的第四颗人造探月卫星。某阶段嫦娥四号绕月球做匀速圆周运动时,离月球中心的距离为r,运行周期为T,月球的半径为R,引力常量为G,根据以上信息可以求得月球的第一宇宙速度为 ( )A、 B、 C、 D、3. 已知月球质量与地球质量之比约为1 : 80,月球半径与地球半径之比约为1 : 4,则月球上的第一宇宙速度与地球上的第一宇宙速度之比最接近( )A、9 : 2 B、2 : 9 C、18 : 1 D、1 : 184. 2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,航天员陈冬、刘洋、蔡旭哲在离地约400km绕地球做近似圆周运动的问天实验舱进行太空投课,此次“天宫课堂”在山东省菏泽第一中学设有地面分课堂,菏泽一中的师生有幸与航天员进行互动交流,课后同学们又进行激烈讨论以下观点正确的是( )A、“天宫”中宇航员由于没有受到地球引力而处于漂浮状态 B、空间站运行周期小于24小时 C、“天宫”的运行速度大于第一宇宙速度 D、载人飞船加速后可追上在同轨道上的核心舱并实施对接5. 火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )A、轨道周长之比为2∶3 B、线速度大小之比为 C、角速度大小之比为 D、向心加速度大小之比为9∶46. 中国空间站工程“巡天”望远镜(简称CSST)将于2024年前后投入运行,CSST以“天宫”空间站为太空母港,日常工作时与空间站共轨独立飞行且与空间站保持适当距离,在需要补给或者维修升级时,主动与“天宫”交会对接,停靠太空母港。已知地球半径为R,空间站轨道半径与地球半径的比值为k,地球表面的重力加速度大小为g,则CSST日常工作时的速度大小为( )A、 B、 C、 D、7. 北斗卫星导航系统(BDS)是我国自行研制的全球卫星导航系统。如图所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,则( )A、卫星a的角速度小于c的角速度 B、卫星a的加速度大于c的加速度 C、卫星a的运行速度大于第一宇宙速度 D、卫星b的周期小于c的周期8. 北斗卫星导航系统具有定位,授时和通信功能。北斗系统采用三种轨道卫星组网,高轨卫星更多,抗遮挡能力强,尤其低纬度地区性能特点更为明显。如图所示,卫星a、b、c沿圆形轨道绕地球运行。a是极地轨道卫星,在地球两极上空约处运行;b是低轨道卫星,距地球表面高度与a相等;c是地球同步卫星,则( )A、a、b的周期比c大 B、a、b的向心力大小一定相等 C、a、b的线速度相同且比c的线速度大 D、a、b的向心加速度大小一定相等9. 如图所示,三颗人造卫星正在围绕地球做匀速固周运动,则下列有关说法中正确的是( )A、卫星可能的轨道为、、 B、卫星可能的轨道为、 C、同步卫星可能的轨道为、 D、同步卫星可能的轨道为、10. 随着我国航天事业的不断发展,未来某一天,我国宇航员降落在某星球上,测得该星球表面的重力加速度为 .已知该星球半径为R,万有引力常量为G,忽略该星球自转造成的影响,则该星球的质量为( )A、 B、 C、 D、11. 宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统。设某双星系统A、B绕其连线上的某固定点O点做匀速圆周运动,如图所示。现测得两星球球心之间的距离为L,运动周期为T,已知万有引力常量为G。若AO>OB,则( )A、星球A的角速度一定大于星球B的角速度 B、星球A所受向心力大于星球B所受向心力 C、双星的质量一定,双星之间的距离减小,其转动周期增大 D、两星球的总质量等于12. 2012年7月26日,一个国际研究小组观测到了一组双星系统,它们绕两者连线上的某点O做匀速圆周运动。此双星系统中体积较小星体(该星体质量较小)能“吸食”另一颗体积较大星体的表面物质,达到质量转移的目的,假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )A、它们做圆周运动的向心力保持不变且相等 B、它们做圆周运动的角速度不断变大 C、体积较大星体做圆周运动轨迹的半径变大,线速度变小 D、体积较大星体做圆周运动的轨迹半径变大,线速度也变大13. 2016年2月11日23:40左右,激光干涉引力波天文台(LIGO)首次宣布发现了引力波。它来源于距地球之外13亿光年的两个黑洞(质量分别为26个和39个太阳质量)互相绕转最后合并的过程。这一发现,证实了爱因斯坦100年前的预测,2017年诺贝尔物理学奖授予为发现引力波作出贡献的三位美国科学家。合并前两个黑洞互相绕转形成一个双星系统,关于此双星系统,只考虑双星间的相互作用,下列说法正确的是( )A、 两个黑洞绕转的线速度大小相等 B、两个黑洞的质量分别与各自绕转的线速度大小成反比 C、两个黑洞绕转的向心加速度大小相等 D、质量大的黑洞旋转半径大
二、多项选择题
-
14. 已知地球的半径R,质量M,万有引力常量G,忽略地球的自转时地表的重力加速度g,则地球的第一宇宙速度( )A、 B、 C、 D、15. 已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是( )A、该卫星距离地面的高度为 B、该卫星的运行速度小于第一宇宙速度 C、该卫星运行的线速度大于地球自转的线速度 D、该卫星运行的向心加速度小于地球表面的重力加速度16. “天问一号”火星探测器被火星捕获后,经过一系列变轨进入如图所示的椭圆停泊轨道,为着陆火星做准备。P点为椭圆的近火点,Q点为远火点,关于探测器在停泊轨道上的运动(忽略其他天体的影响),下列说法正确的是( )A、探测器的机械能守恒火星 B、探测器经过P点时的速度最大 C、探测器经过Q点时的加速度最小 D、探测器经过Q点时做“离心运动”17. 如图所示,、两颗卫星分别绕地球做圆轨道运动和椭圆轨道运动,、两点分别为卫星椭圆轨道的近地点、远地点。则( )A、卫星的运行周期可能为1小时 B、卫星从点到的过程中,速度变化越来越快 C、两颗卫星受到地球的引力大小有时可能相等 D、卫星、与地心的连线在相同的时间内所扫过的面积相同18. 地球同步通讯卫星相对地面是静止的,则目前尚在运行的所有地球同步通讯卫星相同的是( )A、加速度大小 B、速率 C、动能 D、轨道19. 冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为 ,同时绕它们连线上某点O做匀速圆周运动,由此可知,冥王星绕O点运动的( )A、轨道半径约为卡戎的 B、角速度大小约为卡戎的 C、线速度大小约为卡戎的 D、向心力大小约为卡戎的7倍20. 2018年11月,我国以“一箭双星”方式成功发射了第四十二、四十三颗北斗导航卫星,北斗系统开始提供全球服务。这两颗卫星的轨道介于近地轨道和地球同步轨道之间,属于中圆轨道。用1、2、3分别代表近地、中圆和地球同步三颗轨道卫星,关于它们运动的线速度v、角速度ω、加速度a及周期T,下列结论中正确的有( )A、v1>v2>v3 B、ω1<ω2<ω3 C、a1>a2>a3 D、T1<T2<T321. 双星系统由两颗恒星组成,两恒星在相互引力作用下,分别围绕其连线上某一点做周期相同的匀速圆周运动.某双星质量分别为m1、m2 , 做圆周运动的轨道半径分别为R1、R2 , 周期为T,则下列正确的是( )A、两星质量一定相等 B、两星质量之和为m1+m2= C、两星质量之比为 = D、两星质量之比为 =
三、非选择题
-
22. “玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想。“玉兔号”月球车在月球表面做了一个自由下落试验,测得物体从静止自由下落h高度的时间为t , 已知月球半径为R , 引力常量为G。求:(1)、月球的质量;(2)、月球的第一宇宙速度。23. 某中子星的质量大约与太阳的质量相等,为 , 但是它的半径才不过10km,(已知引力常量为 , )求:(1)、此中子星表面的自由落体加速度.(2)、此中子星的第一宇宙速度.24. 神舟号载人飞船火箭发射前,在飞船舱内用一测力计测质量为m物体的重力,测力计示数为 ;载人飞船随火箭竖直向上匀加速升空的过程中,当飞船离地面高为h时宇航员观察到测力计的示数为T。已知地球半径为R,万有引力常量为G,忽略地球自转的影响。求:(1)、地球的质量;(2)、地球的第一宇宙速度;(3)、火箭匀加速上升的加速度大小。25. 2021年2月10日19时52分,我国首次火星探测任务“天问一号”探测器实施近火捕获制动,成功实现环绕火星运动,成为我国第一颗人造火星卫星。在“天问一号”环绕火星做匀速圆周运动时,周期为T , 轨道半径为r。已知火星的半径为R , 引力常量为G , 不考虑火星的自转。(1)、“天问一号”环绕火星运动的角速度ω , 线速度的大小v;(2)、火星的质量M。26. 两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动.现测得两星中心距离为R,其运动周期为T,求两星的总质量.27. 双星系统一般都远离其他天体,由两颗距离较近的星体组成,在它们之间万有引力的相互作用下,绕中心连线上的某点做周期相同的匀速圆周运动。已知某双星系统中两颗星之间的距离为 r,运行周期为 T,引力常量为 G,求两颗星的质量之和。28. 太阳系以外存在着许多恒星与行星组成的双星系统 它们运行的原理可以理解为:质量为M的恒星和质量为m的行星 ,在它们之间的万有引力作用下有规则地运动着 如图所示,我们可认为行星在以某一定点C为中心、半径为a的圆周上做匀速圆周运动 图中没有表示出恒星 设万有引力常量为G,恒星和行星的大小可忽略不计.(1)、求恒星与C点间的距离.(2)、计算恒星的运行速率.