2023-2024学年人教版初中数学七年级下册 8.1 二元一次方程组 同步分层训练 培优题
试卷更新日期:2024-03-19 类型:同步测试
一、选择题
-
1. 已知是二元一次方程的解,又是下列哪个方程的解?( )A、 B、 C、 D、2. 已知是方程的解,那么m的值( )A、2 B、-2 C、4 D、-43. 《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车备几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为( )A、 B、 C、 D、4. 已知是方程的一个解,则的值为( )A、 B、 C、 D、5. 蓝天无人机专卖店三月份销售无人机若干架,其中甲种型号无人机架数比总架数的一半多架,乙种型号无人机架数比总架数的少架设销售甲种型号无人机架,乙种型号无人机架,根据题意可列出的方程组是( )A、 B、 C、 D、6. 当时,关于 , 的方程的解也是选项中方程( )的解A、 B、 C、 D、7. 古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.意思就是说,有一群乌鸦要到树林休息,如果每棵树上落坐有三只乌鸦,则有五个落在地上;如果每棵树上落坐有五只乌鸦,则有一棵树没有乌鸦落坐,请你动脑筋,鸦树各几何?若设乌鸦有只,树有棵,由题意可列方程组( )A、 B、 C、 D、8. 我国古代数学名著孙子算经中有一问题:“今三人共车,两车空;二人共车,九人步问人与车各几何?”其大意为:现有若干人和车,若每辆车乘坐人,则空余两辆车;若每辆车乘坐人,则有人步行问人与车各多少?设有人,辆车,则所列方程组正确的是( )A、 B、 C、 D、
二、填空题
-
9. 若关于x,y的二元一次方程组的解互为相反数,则常数 .10. 已知是方程组的解,则a+b= .11. 端午节是中国传统节日,人们有吃粽子的习俗利群商厦从月日起开始打折促销,肉粽六折,白粽七折,打折前购买盒肉粽和盒白粽需元,打折后购买盒肉粽和盒白粽需元设打折前每盒肉粽的价格为元,每盒白粽的价格为元,则可列方程组 .12. 已知是关于x,y的二元一次方程的解,则 .13. 甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球个
三、计算题
-
14. 解方程组:
四、解答题
-
15. 试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.16. 求方程11x+5y=12的正整数解.
五、综合题
-
17. 在平面直角坐标系中,点A,B,C的坐标分别为(a,0),(2,-4),(c,0),且a,c满足方程为二元一次方程.(1)、求A,C的坐标.(2)、如图1,点D为y轴正半轴上的一个动点,AD∥BC,∠ADO与∠ACB的平分线交于点P,
①求证:∠ADO+∠ACB=90°;
②求∠P的度数;
(3)、如图2,点D为y轴正半轴上的一个动点,连接BD、AB.S△ABD表示△ABD的面积,S△ABC表示△ABC的面积,若S△ABD≤S△ABC成立.设动点D的坐标为(0,d),求d的取值范围.18. 如图,在平面直角坐标系中,点 的坐标分别为 ,将点A沿y轴向上平移 个单位到点 连接线段 .(1)、点C的坐标为(用含b的式子表示)﹔(2)、如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程 成立,就说这个点的坐标是方程 的解.已知点B和C的坐标都是方程 的解,求 的值;(3)、在 的条件下,平移线段 ,使点C移动到点B,点B移动到点D,得到线段 若点 是线段 上的一点,且点P的坐标是方程 的解,试说明平移后点P的对应点 的坐标也是方程 的解.
-