2024年人教版中考数学二轮复习 专题8 一元二次方程(解答题专练)
试卷更新日期:2024-02-23 类型:二轮复习
一、解答题
-
1. 某种病毒在其生长过程中,在保证自身稳定性的前提下,每隔半小时繁殖出若干个新的病毒,如果由最初的一个病毒经过1h后变成了841个病毒,求一个病毒每半小时繁殖出多少个病毒.2. 某种音乐播放器MP3原来每只售价400元,经过连续两次降价后,现在每只售价为256元.求平均每次降价的百分率.3. 某公司今年销售一种产品,1月获得利润20万元,由于产品畅销,利润逐月增加,3月的利润比2月的利润增加4.8万元,假设该产品每月利润的增长率相同,求这个增长率.4. 某种计算机CPU(中央处理器)经过7,8月连续两次降价,每片售价由2 500元降到了1600元.已知每次降价的百分率相同.(1)、求每次降价的百分率.(2)、若9月继续保持相同的百分率降价,则这款CPU在9月的售价为多少元?5. 已知关于x的一元二次方程(1)、求证:不论k为何值时,此方程总有两个实数根;(2)、当方程的一个根为 时,求方程的另一个根x2及k的值.6. 小明同学在寒假社会调查实践活动期间,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:
①该厂1月罐头加工量为a吨.
②该厂3月的加工量比1月增长了44%.
③该厂第一季度共加工罐头182吨.
④该厂从4月开始设备整修更新,加工量每月按相同的百分率开始下降.
⑤6月设备整修更新完毕,此月加工量为1月的2.1倍,与5月相比增长了46.68吨.
利用以上信息,求:
(1)、该厂第一季度加工量的月平均增长率.(2)、a的值.(3)、该厂第二季度的总加工量7. 某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨(1)、求4月份再生纸的产量;(2)、若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨再生纸的利润比上月增加 %,则5月份再生纸项目月利润达到66万元求m的值;(3)、若4月份每吨再生纸的利润为1 200元,4至6月每吨再生纸利润的月平均增长率与6月再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润.8. 已知关于的二次函数.(1)、该函数的图象与轴只有一个交点,求与之间的关系.(2)、若 , 当时,随的增大而增大,求的取值范囲.
(3)、若 , 该函数的象不经过第三累限,求的取值范围.9. 如图所示,中, , , .点从点开始沿边向以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动. , 分别从 , 同时出发.(1)、经过几秒,、间的距离等于6cm?(2)、线段能否将分成面积相等的两部分?若能,求出运动时间;若不能,说明理由.(3)、几秒时,与相似?10. 如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知 , 这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.请解决下列问题:
(1)、写出一个“勾系一元二次方程”;(2)、求证:关于x的“勾系一元二次方程” 必有实数根;(3)、若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6 , 求△ABC面积.二、综合题
-
11. 如图,老李想用长为的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈 , 并在边上留一个宽的门(建在处,另用其他材料).(1)、当羊圈的长和宽分别为多少米时,能围成一个面积为640的羊圈?(2)、羊圈的面积能达到吗?如果能,请你给出设计方案;如果不能,请说明理由.12. 某农场要建一个饲养场(矩形 )两面靠现有墙( 位置的墙最大可用长度为21米, 位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米,设饲养场(矩形 )的一边 长为x米.(1)、饲养场另一边 米(用含x的代数式表示);(2)、若饲养场 的面积为180平方米,求x的值;(3)、饲养场 的面积能围成面积比 更大的吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.13. 如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的 .(1)、求配色条纹的宽度;
(2)、如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
14. 2020年,某家庭纯收入为2500元,通过政府产业扶持,发展养殖业,到2022年,家庭收入为3600元.(1)、求该家庭2020年到2022年人均收入的年平均增长率.(2)、若年平均增长率保持不变,2023年家庭年收入是否达到4200元?15. 如图所示,四边形为矩形, , , 若点Q从A点出发沿以的速度向D运动,P从B点出发沿以的速度向A运动,如果P、Q分别同时出发,当一个点到达终点时,另一点也同时停止.设运动的时间为 .(1)、当为何值时,的面积为?(2)、是否存在t使为等腰三角形?若存在,求出t值;若不存在,请说明理由.16. 已知关于x的一元二次方程:x2-(2k+1)x+4(k-)=0.(1)、求证:这个方程总有两个实数根;(2)、若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长.17. 定义:当取任意实数,函数值始终不小于一个常数时,称这个函数为“恒心函数”,这个常数称为“恒心值”.(1)、判断:函数是否为“恒心函数”,如果是,求出此时的“恒心值”,如果不是,请说明理由;(2)、已知“恒心函数”①当时,此时的恒心值为 ;
②若三个整数的和为12,且 , 求的最大值与最小值,并求出此时相应的的值;
(3)、“恒心函数”的恒心值为0,且恒成立,求的取值范围.