2023-2024学年初中数学九年级上册 3.2 平行线分线段成比例 同步分层训练培优卷(湘教版)

试卷更新日期:2023-12-16 类型:同步测试

一、选择题

  • 1. 如图,已知ABCDEF,它们依次交直线l1 , l2于点A、D、F和点B、C、E,如果AD:DF=3:1,BE=12,那么CE等于( )

    A、9 B、4 C、6 D、3
  • 2. 如图,在矩形ABCD中,AB>BC , 延长DC至点E , 使得CE=BC , 以DE为直径的半圆OBC延长线于点F.欧几里得在《几何原本》中利用该图得到结论:矩形ABCD的面积等于CF的平方(即SABCD=CF2).现连接FO并延长交AB于点G , 若OF=2OG , 则OCF与矩形ABCD的面积之比为( )

    A、35 B、38 C、25 D、49
  • 3. 小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若点ABC三点均在相应的等高线上,且三点在同一直线上,则ABAC的值为( )

    A、12 B、23 C、35 D、2
  • 4. 如图,MNABC的中位线,点F在线段BC上,CF=2BF , 连接AFMN于点E,下列说法错误的是( )

    A、AEAF=12 B、MEMN=13 C、AMBM=AEAF D、MEBF=ANAC
  • 5. 如图ABCDEFAFBE相交于点G,且AG=2GD=1DF=5 , 则CEBC=(    )

    A、5:3 B、1:3 C、3:5 D、2:3
  • 6. 如图,直线a∥b∥c,则下列结论错误的为(    )

    A、ABBC=DEEF B、ACAB=DFDE C、BCEF=ACDF D、BECF=ABAC
  • 7. 如图,在矩形ABCD的外部有四个全等的直角三角形,分别为△AEB,△BFG,△CGD,△DHE,连结EC,DF交于点O,若SDEOSFCO=53 , 则AEAB的值为(    )

    A、14 B、13 C、25 D、12
  • 8. 如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH , 则CM的长为(  )

    A、12 B、34 C、1 D、54

二、填空题

  • 9. 如图,在四边形ABCD中,BCD=90° , 对角线ACBD相交于点O . 若AB=AC=5BC=6ADB=2CBD , 则AD的长为

      

  • 10. 如图,在菱形ABCD中,点E,F,G,H分别是ABBCCDAD上的点,且BE=BF=CG=AH , 若菱形的面积等于24,BD=8 , 则EF+GH=

  • 11. 如图,正方形ABCD中,E为BC上一点,过B作BGAE于G,延长BG至点F使CFB=45° , 延长FCAE交于点M,连接BM , 若C为FM中点,BM=10 , 则FG的长为

  • 12. 如图,矩形ABCD中,点BCx轴上,ADy轴于点E , 点FAB上,AFBF=12 , 连接CFy轴于点G , 过点FFPx轴交CD于点P , 点P在函数y=kx(k<0x<0)的图象上.若BCG的面积为2 , 则k的值为 DEG的面积与BOG的面积差为 .

  • 13. 由四个全等的直角三角形和一个小正方形组成的大正方形ABCD如图所示.将小正方形对角线EF双向延长,分别交边AB,和边BC的延长线于点G,H.若大正方形与小正方形的面积之比为5,GH=25 , 则大正方形的边长为 

三、解答题

  • 14. 如图,在ABC中,DEBC , 若AB=5cmAD=2cmAC=4cm , 求EC的长.

  • 15. 如图,梯形ABCD中,ADBC , 点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.求证:EFGB=BFGE

四、综合题

  • 16. 课本再现

    思考

    我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?

    可以发现并证明菱形的一个判定定理;

    对角线互相垂直的平行四边形是菱形.

    (1)、定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.

    已知:在ABCD中,对角线BDAC , 垂足为O

    求证:ABCD是菱形.

      

    (2)、知识应用:如图2 , 在ABCD中,对角线ACBD相交于点OAD=5AC=8BD=6

      

    ①求证:ABCD是菱形;

    ②延长BC至点E , 连接OECD于点F , 若E=12ACD , 求OFEF的值.

  • 17. 如图,在7×5的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A,B,C,D重合.

    (1)、在图1中画一条格点线段GH , 使G,H分别落在边ADBC上,且GHEF互相平分.
    (2)、在图2上画一条格点线段MN , 使M,N分别落在边ABCD上,且要求MNEF12两部分.