2023-2024学年北师大版数学八年级上册5.8*三元一次方程组 同步练习(基础卷)

试卷更新日期:2023-10-15 类型:同步测试

一、选择题

  • 1. 已知2x﹣3y=3,3y﹣4z=5,x+2z=8,则代数式3x2﹣12z2的值是(   )
    A、32 B、64 C、96 D、128
  • 2. 已知abc是自然数,且满足2a×3b×4c=192 , 则a+b+c的取值不可能是(   )
    A、5 B、6 C、7 D、8
  • 3. 有铅笔、练习本、圆珠笔三种学习用品.若购铅笔3支,练习本7本,圆珠笔1支共需31元;若购铅笔4支,练习本10本,圆珠笔1支共需42元.现购铅笔,练习本,圆珠笔各1个,共需(   )
    A、12元 B、10.5元 C、9.5元 D、9元
  • 4. 某宾馆有单人间,双人间,三人间三种客房供游客选择居住,现某旅游团有20名旅客同时安排游客居住在该宾馆,若每个房间都住满,共租了9间客房,则居住方案(    )
    A、1种 B、2种 C、3种 D、4种
  • 5. 三元一次方程组 {x+y=3y+z=5x+z=4 ,的解为(   )
    A、{x=1y=3z=2 B、{x=2y=1z=3 C、{x=3y=2z=1 D、{x=1y=2z=3
  • 6. 利用两块长方体木块测量两张桌子的高度.首先按图 方式放置,再交换两木块的位置,按图 方式放置.测量的数据如图,则桌子高度是(  )

    A、74cm B、75cm C、76cm D、77cm
  • 7. 桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?(   )
    A、80 B、110 C、140 D、220
  • 8. 三角形的周长为18cm,第一边与第二边的长度和等于第三边长度的2倍,而它们长度的差等于第三条边长的 13 ,这个三角形的各边长为( )
    A、7、5、8 B、7、5、6 C、7、1、9 D、7、8、4
  • 9. 如果 {x+2y8z=02x3y+5z=0  ,其中xyz≠0,那么x:y:z=(   )
    A、1:2:3 B、2:3:4 C、2:3:1 D、3:2:1
  • 10.

    学校组织了一次游戏,每位选手朝特制的靶子上各投三以飞镖,现规定,当飞镖落在同一圆环内时得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是(  )

    A、31分 B、33分 C、36分 D、38分

二、填空题

  • 11. 若a、b、c、d为整数,且b是正整数,满足b+c=d,c+d=a,a+b=c,那么a+2b+3c+4d的最大值是
  • 12. 为实现新型冠状病毒灭活疫苗量产,某地甲、乙、丙三个生产车间在甲车间投入生产后依次相差两天时间投入生产.当乙车间生产8天时,所生产的疫苗总数量与甲车间生产的疫苗总数量相等;当丙车间生产12天时,所生产的疫苗总数量与甲车间生产的疫苗总数量相等.若甲、乙、丙三个生产车间每天各自生产的疫苗数量不变,则当丙车间生产的疫苗总数量和乙车间生产的疫苗总数量相同后,再过天,丙车间生产的疫苗总数量比甲车间生产的疫苗总数量多20%.
  • 13. “九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝 34 元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为枝.
  • 14. 在我校举行的小科技创新发明比赛中,共有60人获奖,组委会原计划按照一等奖5人,二等奖15人,三等奖40人进行奖励.后来经学校研究决定,在该项奖励总奖金不变的情况下,各等级获奖人数实际调整为:一等奖10人,二等奖20人,三等奖30人,调整后一等奖每人奖金降低80元,二等奖每人奖金降低50元,三等奖每人奖金降低30元,调整前二等奖每人奖金比三等奖每人奖金多70元,则调整后一等奖每人奖金比二等奖每人奖金多元.
  • 15. 已知:a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.

三、解答题

  • 16. 解方程组:3x-y+z=101x+2y-z=62x+y+2z=173

  • 17. 解方程组:x-1=02x-y+z=-1-x+y+z=0

  • 18. “整体思想”是数学解题中的一种重要的思想方法.数学课上,李老师给出了一个问题,已知实数xy满足{3xy=52x+3y=7 , 求x-4y和7x+5y的值.

    小天:利用消元法解方程组,得xy的值后,再代入求x-4y和7x+5y的值;

    小红:发现两个方程相同未知数系数之间的关系,通过适当变形,整体求得代数式的值,3x-y=5①,2x+3y=7②,由①-②可得x-4y=-2,由①+②×2可得7x+5y=19;

    李老师对两位同学的讲解进行点评,指出小红同学的思路体现了数学中“整体思想”的运用.请你参考小红同学的做法,解决下面的问题:

    (1)、已知二元一次方程组{2x+y=4x+2y=5 , 则x-yx+y
    (2)、请说明在关于xy的方程组{x+3y=4ax5y=3a中,无论a为何值,x+y的值始终不变;
    (3)、八年级(1)班开展安全教育知识竞赛需购买奖品,若买3支铅笔、5块橡皮、1本笔记本共需21元;若买4支铅笔、7块橡皮、1本笔记本共需28元,则购买10支铅笔、10块橡皮、10本笔记本共需多少元?(直接写出结果)
  • 19. 如图是一个正方体展开图,已知正方体相对两面的代数式的值相等;

    (1)、求a、b、c 的值;
    (2)、判断a+b-c的平方根是有理数还是无理数.
  • 20. 一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

    车型

    汽车运载量(吨/辆)

    5

    8

    10

    汽车运费(元/辆)

    400

    500

    600

    (1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?

    (2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?

    (3)求出那种方案的运费最省?最省是多少元.