重庆重点学校2023-2024学年九年级上学期开学数学试卷
试卷更新日期:2023-10-09 类型:开学考试
一、选择题(本大题共10小题,共40.0分。在每小题列出的选项中,选出符合题目的一项)
-
1. 在一些美术字中,有的汉字是轴对称图形.下面个汉字中,可以看作是轴对称图形的是( )A、 B、 C、 D、2. 在函数中,自变量的取值范围是( )A、 B、 C、且 D、且3. 若在两个相邻整数之间,则这两个整数是( )A、和 B、和 C、和 D、和4. 进入月以来,某大型商场前三周的营业收入持续上涨,若月第周营业收入为亿元,月第周的营业收入为亿元,设平均每周的增长率为 , 则可列方程为( )A、 B、
C、 D、5. 一次函数和反比例函数在同一直角坐标系中的图象可能是( )A、 B、 C、 D、6. 如图,在平面直角坐标系中,与是以点为位似中心的位似图形, , 若的面积为 , 则的面积为( )A、 B、 C、 D、7. 如图,在矩形中,对角线、相交于点 , 平分交边于点 , 点是的中点,连接 , 若 , , 则的长度为( )A、 B、 C、 D、8. 某天,墩墩和容融在同一直线道路上同起点出发,分别以不同的速度匀速行走米当墩墩领先容融米时,墩墩停下来休息,当容融追上墩墩的瞬间,墩墩立即又以原来的速度继续走向终点,在整个行走过程中,墩墩和容融之间的距离米与它们出发时间分钟的关系如图所示,下列说法正确的是( )A、容融的速度为米分钟 B、墩墩休息了分钟 C、第分钟时,墩墩到达终点 D、领先者到达终点时,两者相距米9. 如图,在平面直角坐标系中,的顶点在函数的图象上, , 边在轴上,点为斜边的中点,连接并延长交轴于点 , 连接 , 若的面积为 , 则的值为( )
A、 B、 C、 D、10. 对任意代数式,每个字母及其左边的符号不包括括号外的符号称为一个数,如: , 其中称为“数”,为“数”,为“数”,为“数”,为“数”,若将任意两个数交换位置,则称这个过程为“换位思考”,例如:对上述代数式的“数”和“数”进行“换位思考”,得到:;又如对“数”和“数”进行“换位思考”,得到:下列说法:
代数式进行一次“换位思考”,化简后只能得到种结果;
代数式进行一次“换位思考”,化简后可以得到种结果;
代数式进行一次“换位思考”,化简后可以得到. 种结果;
代数式进行一次“换位思考”,化简后可以得到种结果,其中正确的个数是( )A、 B、 C、 D、二、填空题(本大题共8小题,共32.0分)
-
11. 计算: .12. 现有三张正面分别标有数字 , , 的卡片,它们除数字不同外其余完全相同,将卡片背面朝上洗匀后,从中随机抽取一张,将卡片上的数字记为 , 放回洗匀后再随机抽取一张,将卡片上的数字记为 , 则满足为偶数的概率为 .13. 已知 , 是方程的两个实数根,则代数式的值 .14. 如图,在平面直角坐标系中,点在第二象限,连接 , 过点作轴于点 , 反比例函数的图象分别与、交于点、 , 连接 , 若为的中点,且四边形的面积为 , 则的值为 .15. 如图,在平面直角坐标系中,一次函数的图象分别与、轴交于点、 , 点是线段的中点,连接 , 作于点交轴于点 , 则线段 .
16. 如图,在中, , , 将沿向下翻折得到 , 点为上一点,连接交于点 , 若 , , , 则的面积为 .17. 若关于的一元一次不等式组至少有个整数解,且关于的分式方程的解为非负数,则所有满足条件的整数的值之和为 .18. 对于一个各数位上的数字均不为且互不相等的三位自然数 , 将它各个数位上的数字分别乘以后再取其个位数,得到三个新的数字,再将这三个新数字重新组合成不同的三位数 , 当的值最小时,称此时的为自然数的“魅力数”,并规定例如:时,其各个数位上数字分别乘以后的三个数的个位数分别是:、、 , 重新组合后的数为、、、、、 , 因为的值最小,所以是的“魅力数”,此时 , 则 ,若、都是各数位上的数字均不为且互不相等的三位自然数,且 , , 其中、均为整数若能被整除,能被整除,则的最大值为 .三、解答题(本大题共8小题,共78.0分。解答应写出文字说明,证明过程或演算步骤)
-
19. 计算:(1)、;(2)、 .20. 如图,在中, , 过点作交于点点是线段上一点,连接 , 请完成下面的作图和填空.(1)、用尺规完成以下基本作图:以点为顶点,在的右边作 , 射线交的延长线于点 , 连接 , 保留作图痕迹,不写作法,不下结论(2)、求证:四边形是菱形.
证明: , ,
,
.
在和中, ,
≌ ,
.
,
,
四边形是平行四边形.
,
四边形是菱形.21. 为提高学生面对突发事故的应急救护能力,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为分的“防自然灾害知识测评”,为了了解学生的测评情况,学校在七、八年级中分别随机抽取了名学生的分数进行整理分析,已知分数均为整数,且分为 , , , , 五个等级,分别是:
: , : , : , : , : .
并给出了部分信息:
【一】七年级等级的学生人数占七年级抽取人数的;
八年级等级中最低的个分数分别为: , , , , , , , , , .
【二】两个年级学生防自然灾害知识测评分数统计图:
【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:平均数
中位数
众数
七年级
八年级
(1)、直接写出 , 的值,并补全条形统计图;(2)、根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由说明一条理由即可;(3)、若分数不低于分表示该生对防自然灾害知识掌握较好,且该校七年级有人,八年级有人,请估计该校七、八年级所有学生中,对防自然灾害知识掌握较好的学生人数.22. 如图,在中, , 点为的中点,于点 , 连接 , 已知 .(1)、若 , 求的长度;(2)、若 , 求 .23. 如图,在正方形中,对角线 , 相交于点 , , 动点以每秒个单位的速度,从点出发,沿折线方向运动,当点到达点时停止运动,设运动时间为 , 动点是射线上一点,且 , 记的面积为 , 的面积为 .(1)、请直接写出 , 与之间的函数关系式,并写出的取值范围;(2)、在平面直角坐标系中,画出和的函数图象,并写出函数的一条性质: ;(3)、结合函数图象,估计当时的近似值近似值保留一位小数,误差不超过24. 长白山之巅的天池是松花江、图们江、鸭绿江三江之源,夏融池水湛蓝:所以每年的七月和八月都会吸引大量游客前往观看今年月份,北坡游客接待中心平均每天每小时接待人数比西坡游客接待中心平均每天每小时接待人数多 , 两游客接待中心平均每天每小时接待游客共人.(1)、求月份这两个游客接待中心平均每天每小时分别接待游客各多少人;(2)、因为月份用天较多,游客减少,北坡游客接待中心平均每天每小时接待的人数比月少人,西坡游客接待中心平均每天每小时接待的人数比月少 , 在个小时内,这两个接待中心共接待名游客,求的值.25. 如图,在平面直角坐标系中,直线与轴交于点 , 与轴交于点 , 直线:与直线交于点 , 已知 , .
(1)、求直线的解析式;(2)、如图 , 点为直线上一动点且位于点的左侧,、为轴上两个动点,点位于点上方,且 , 当时,求最小值;(3)、如图 , 将沿着射线方向平移,平移后、、三点分别对应、、三点,当过点时停止运动,已知动点在直线上,在平面直角坐标系中是否存在点 , 使得以、、、四个点为顶点的四边形为菱形,若存在,请直接写出点的横坐标;若不存在,请说明理由.26. 在正方形中,、分别为边上的两点,连接、并延长交于点 , 连接 , 为上一点,连接、 .(1)、如图 , 若为的中点,且 , , 求线段的长;(2)、如图 , 过点作 , 且 , 连接 , 刚好交的中点 , 当时,求证:;(3)、如图 , 在的条件下,点为线段上一动点,连接 , 作于点 , 将沿翻折得到 , 点、分别为线段、上两点,且 , , 连接、交于点 , 连接 , 请直接写出面积的最大值.